
Analysis and synthesis model of compilation

EasyExamNotes.com Analysis and synthesis model of compilation

The analysis and synthesis model of compilation helps bridge the gap between high-level
programming languages and machine-level execution, enabling the development of efficient
and portable software applications.

Analysis Phase:

The analysis phase focuses on understanding the structure and meaning of the source code,
ensuring its correctness and adherence to syntax and semantics.

1. Lexical Analysis: The compiler breaks down the source code into individual tokens, such as
keywords, identifiers, operators, and literals. It removes unnecessary elements like white
spaces and comments.

2. Syntax Analysis: The compiler verifies the syntax of the code by checking the arrangement
of tokens according to the language’s grammar rules. It builds a parse tree or abstract syntax
tree (AST) that represents the hierarchical structure of the code.

3. Semantic Analysis: The compiler checks the meaning and context of the code. It ensures
that expressions, statements, and declarations adhere to the language’s semantic rules.
Type checking and symbol table construction are performed to catch any semantic errors.

Synthesis Phase:

The synthesis phase involves generating more efficient representations of the code,
optimizing it, and finally producing the target code that can be executed by the computer.

1. Intermediate Code Generation: The compiler may generate an intermediate representation
of the source code, which is often platform-independent and provides a more optimized

https://easyexamnotes.com/what-are-high-level-programming-languages/
https://easyexamnotes.com/what-are-high-level-programming-languages/


Analysis and synthesis model of compilation

EasyExamNotes.com Analysis and synthesis model of compilation

representation for further processing.

2. Optimization: The compiler applies various optimization techniques to the intermediate
code. These optimizations improve the efficiency and performance of the resulting
executable. Examples include constant folding, loop unrolling, and dead code elimination.

3. Code Generation: The compiler generates the target code, which can be machine code
specific to the target hardware or assembly language closely resembling the machine code.
This output code is executable on the target system without the need for further translation.

Related Posts:
Introduction to Compiler1.
Bootstrapping and Porting2.
Lexical Analyzer: Input Buffering3.
Storage Allocation Strategies4.
Type Checking5.
Specification & Recognition of Tokens6.
Front end and back end of the compiler7.
LEX8.
Analysis synthesis model of compilation9.
Data structure in CD10.
Register allocation and assignment11.
Loops in flow graphs12.
Dead code elimination13.
Syntax analysis CFGs14.
L-attribute definition15.

https://easyexamnotes.com/introduction-to-compiler/
https://easyexamnotes.com/bootstrapping-n-po/
https://easyexamnotes.com/input-buffering/
https://easyexamnotes.com/storage-allocation-strategies/
https://easyexamnotes.com/type-checking-2/
https://easyexamnotes.com/specification-recognition-of-tokens_4/
https://easyexamnotes.com/front-end-and-back-end-of-compiler/
https://easyexamnotes.com/lex/
https://easyexamnotes.com/analysis-synthesis/
https://easyexamnotes.com/data-structure-in-cd/
https://easyexamnotes.com/register-allocation-and-assignment/
https://easyexamnotes.com/loops-in-flow-graphs/
https://easyexamnotes.com/dead-code-elimination/
https://easyexamnotes.com/cfgs_61/
https://easyexamnotes.com/l-attribute-definition/


Analysis and synthesis model of compilation

EasyExamNotes.com Analysis and synthesis model of compilation

Operator precedence parsing16.
Analysis of syntax directed definition17.
Recursive descent parser18.
Function and operator overloading19.
Storage allocation strategies20.
Equivalence of expression in type checking21.
Storage organization22.
Parameter passing23.
Run time environment24.
Type checking25.
Code generation issue in design of code generator26.
Boolean expression27.
Declaration and assignment in intermediate code generation28.
Code optimization29.
Sources of optimization of basic blocks30.
Loop optimization31.
Global data flow analysis32.
Data flow analysis of structure flow graph (SFG)33.

https://easyexamnotes.com/operator-precedence-parsing/
https://easyexamnotes.com/analysis-of-syntax-directed-definition/
https://easyexamnotes.com/recursive-descent-parser/
https://easyexamnotes.com/function-and-operator-overloading/
https://easyexamnotes.com/storage-allocation-strategies-2/
https://easyexamnotes.com/equivalence-of-expression-in-type-checking/
https://easyexamnotes.com/storage-organization/
https://easyexamnotes.com/parameter-passing/
https://easyexamnotes.com/run-time-environment/
https://easyexamnotes.com/type-checking-3/
https://easyexamnotes.com/code-generation-issue-in-design-of-code-generator/
https://easyexamnotes.com/boolean-expression/
https://easyexamnotes.com/declaration-and-assignment-in-intermediate-code-generation/
https://easyexamnotes.com/code-optimization/
https://easyexamnotes.com/sources-of-optimization-of-basic-blocks/
https://easyexamnotes.com/loop-optimization/
https://easyexamnotes.com/global-data-flow-analysis/
https://easyexamnotes.com/data-flow-analysis-of-structure-flow-graph/

