
Front end and back end of the compiler

EasyExamNotes.com Front end and back end of the compiler

Front end and back end of the compiler

Front end and back end is the collection of phases of compiler.
Front End : 
1. Lexical Analysis, 
2. Syntax Analysis,
3. Semantic Analysis, 
4. Intermediate Code, 
5. Some amount of Code Optimization.

Back End: 
1. Code Optimization, 
2. Code Generation

1. Lexical Analysis: It takes source program as input and produce tokens.
What is lexical token ?
Ans. A unit in the grammar of the programming language.
Examples:
Type token = (id, number)
Punctuation token = (if, return)

2. Syntax Analysis: It takes output of lexical analysis as input and produces tree as output.
For example: Output of Lexical analysis = C = A + B
Input of syntax analysis = C = A + B
Output of syntax analysis =



Front end and back end of the compiler

EasyExamNotes.com Front end and back end of the compiler

3. Semantic Analysis : It takes output of syntax analysis as input and produces a tree with
type information as output.
It checks for sematic errors.
For example: Output of syntax analysis

Input of semantic analysis = 

Output of semantic analysis = 

4. Intermediate code: It takes output of semantic analysis as input and produces intermediate
code as output.

https://i0.wp.com/lh3.googleusercontent.com/-8PHOqA6OeWg/YJ1Ezz--61I/AAAAAAAAHJg/NVGZ5VPMVm88dj_rdYX_bGp35-ljrq0EACLcBGAsYHQ/image.png?ssl=1
https://i0.wp.com/lh3.googleusercontent.com/-wCVZIozMTqQ/YJ1E7sfLKqI/AAAAAAAAHJo/8M1_FnTmYWw01_732eHnxsGGH4QEBIPrACLcBGAsYHQ/image.png?ssl=1
https://i0.wp.com/lh3.googleusercontent.com/-NhmQjqj2Gew/YJ1FCz_IRqI/AAAAAAAAHJs/bljA0iEgjokTJru5IDG-SI6WyeMtUo4cACLcBGAsYHQ/image.png?ssl=1
https://i0.wp.com/lh3.googleusercontent.com/-qKNI_--LMX8/YJ1FIxnrAPI/AAAAAAAAHJ0/mZ0RwztKppgFXwCxDZQNcKYydLGw-9jkgCLcBGAsYHQ/image.png?ssl=1


Front end and back end of the compiler

EasyExamNotes.com Front end and back end of the compiler

Disadvantages of Front End:
1. Requires large amount of memory to store tokens and trees.
2. Data move from one memory to another which makes it very slow.

Function of Front End:
1. Determine validity of source code.
2. Determine content of source code.
3. Build source code for easy to analyze.

1. Code optimization : It is the process to modify the program to make it more efficient, faster
execution, less resources requirements. 
Levels of code optimization:
a. Design level
b. Source code level
c. Compile level
d. Assembly level
e. Run time level

2. Code generation : Knowledge of target architecture helps code generation to determine:
a. Where to store result in memory location or registers.
b. Which instruction is better for type conversion.
c. Which addressing mode to use.
For example:
AX = 5, BX = 2, AX+BX
Assembly code :
MOV AX, 5
MOV BX, 2



Front end and back end of the compiler

EasyExamNotes.com Front end and back end of the compiler

ADD AX, BX

Related Posts:
Introduction to Compiler1.
Analysis and synthesis model of compilation2.
Bootstrapping and Porting3.
Lexical Analyzer: Input Buffering4.
Storage Allocation Strategies5.
Type Checking6.
Specification & Recognition of Tokens7.
LEX8.
Analysis synthesis model of compilation9.
Data structure in CD10.
Register allocation and assignment11.
Loops in flow graphs12.
Dead code elimination13.
Syntax analysis CFGs14.
L-attribute definition15.
Operator precedence parsing16.
Analysis of syntax directed definition17.
Recursive descent parser18.
Function and operator overloading19.
Storage allocation strategies20.
Equivalence of expression in type checking21.

https://easyexamnotes.com/introduction-to-compiler/
https://easyexamnotes.com/analysis-and-synthesis-model-of/
https://easyexamnotes.com/bootstrapping-n-po/
https://easyexamnotes.com/input-buffering/
https://easyexamnotes.com/storage-allocation-strategies/
https://easyexamnotes.com/type-checking-2/
https://easyexamnotes.com/specification-recognition-of-tokens_4/
https://easyexamnotes.com/lex/
https://easyexamnotes.com/analysis-synthesis/
https://easyexamnotes.com/data-structure-in-cd/
https://easyexamnotes.com/register-allocation-and-assignment/
https://easyexamnotes.com/loops-in-flow-graphs/
https://easyexamnotes.com/dead-code-elimination/
https://easyexamnotes.com/cfgs_61/
https://easyexamnotes.com/l-attribute-definition/
https://easyexamnotes.com/operator-precedence-parsing/
https://easyexamnotes.com/analysis-of-syntax-directed-definition/
https://easyexamnotes.com/recursive-descent-parser/
https://easyexamnotes.com/function-and-operator-overloading/
https://easyexamnotes.com/storage-allocation-strategies-2/
https://easyexamnotes.com/equivalence-of-expression-in-type-checking/


Front end and back end of the compiler

EasyExamNotes.com Front end and back end of the compiler

Storage organization22.
Parameter passing23.
Run time environment24.
Type checking25.
Code generation issue in design of code generator26.
Boolean expression27.
Declaration and assignment in intermediate code generation28.
Code optimization29.
Sources of optimization of basic blocks30.
Loop optimization31.
Global data flow analysis32.
Data flow analysis of structure flow graph (SFG)33.

https://easyexamnotes.com/storage-organization/
https://easyexamnotes.com/parameter-passing/
https://easyexamnotes.com/run-time-environment/
https://easyexamnotes.com/type-checking-3/
https://easyexamnotes.com/code-generation-issue-in-design-of-code-generator/
https://easyexamnotes.com/boolean-expression/
https://easyexamnotes.com/declaration-and-assignment-in-intermediate-code-generation/
https://easyexamnotes.com/code-optimization/
https://easyexamnotes.com/sources-of-optimization-of-basic-blocks/
https://easyexamnotes.com/loop-optimization/
https://easyexamnotes.com/global-data-flow-analysis/
https://easyexamnotes.com/data-flow-analysis-of-structure-flow-graph/

