Is a group with respect to the operation of addition of integers?

Sol.

1) Closure Property:
$2+2=4 ;$
$2-2=0$;
$6+4=10^{\prime}$
$4-6=-2$;
We know that addition of two integers is also in integer.
i.e, $a+b \in I, \forall a, b \in I$
2) Associative Property:
$2+(4+6)=(2+4)+6$;
$2+(4-6)=(2-6)+4 ;$
We know that addition of integer is an associative composition.
i.e, $a+(b+c)=(a+b)+c, \forall a, b, c \in I$
3) Existence of Identity:
$0+2=2+0$;
$0-2=-2+0$;
Therefore there an element exist in given integer set which leaves no effect on operation.
O is an additive identity.
i.e, $a+0=0+a, \forall a \in I$
4) Existence of Inverse:
$2-2=0=-2+2 ;$
$3-3=0=-3+3$;
Inverse of elements also exist in given group.
i.e, $a+(-a)=0=(-a)+a, \forall a \in I$

Set 'I' have all the properties which a group have.
Hence I is a group with respect to addition.

