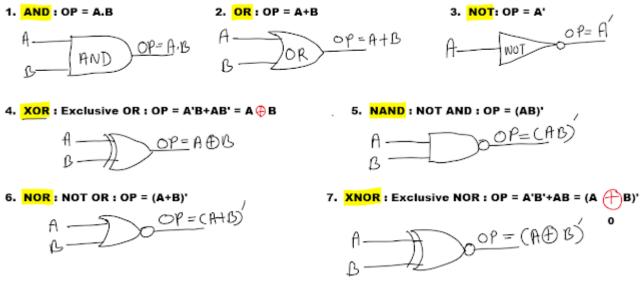
Logic gate:

- Block of hardware's, on getting input they produce output 0 or 1.
- Input for logic gates are either 0 or 1.
- Output for logic gates are either 0 or 1.
- Each logic gate has its symbol.
- Operations of logic gate are represented by algebraic expressions.

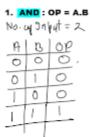
Names of logic gates:

- 1. AND logic gate
- 2. OR logic gate
- 3. NOT logic gate
- 4. XOR logic gate
- 5. NAND logic gate
- 6. NOR logic gate
- 7. XNOR logic gate


Logic gate operations:

Input variables: A, B Output variable: OP

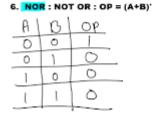
- 1. AND : OP = A.B
- 2. OR: OP = A + B
- 3. NOT : OP = A'
- 4. XOR : Exclusive OR : OP = A'B+AB' = A B
- 5. NAND : NOT AND : OP = (AB)'
- 6. NOR: NOT OR: OP = (A+B)'


7. XNOR: Exclusive NOR: OP = A'B' + AB = (A B)'

Logic gate symbols:

Truth Table:

Table shows relationship between input and output variables in logic gates.



2. OR : OP = A+B							
A	B	OP					
0	0	0					
0	١,	1					
1	0/	1					
1/	1						

NOT: OP = A'					
A	OP				
0	1				
1	0				

4. XOR : Exclusive OR : OP = A'B+AB' = A⊕B						
	A \	B	OP			
	0	0	0	_		
	٥	- (1	_		
		0)			
	1	1	O			
		1				

. XNOR : Exclusive NOR : OP = A'B						
	A]	B	OP			
	0	0	\	_		
	0	1	0			
	1 /	0	0			
•	,	1	1			
•	-					

Related Posts:

- 1. Structure of Desktop computers
- 2. Register Organization
- 3. Bus structure in Computer Organization
- 4. Addressing modes
- 5. Register Transfer Language
- 6. Numerical problem on Direct mapping
- 7. Registers in Assembly Language Programming
- 8. Array in Assembly Language Programming
- 9. Net 31
- 10. How to start with GNU Simulator 8085
- 11. Cache Updating Scheme
- 12. Cache Memory
- 13. Principle of Cache Memory
- 14. Cache Mapping
- 15. Addition and subtraction in fixed point numbers

- 16. PCI Bus
- 17. Booths Algorithm
- 18. Write a short note on design of arithmetic unit?
- 19. Write a short note on Array processors?
- 20. Write a short note on LRU algorithm?
- 21. What is the format of Micro Instruction in Computer Architecture explain?
- 22. What is the layout of pipelined instruction in Computer Architecture?
- 23. Explain the following interfaces in Detail:PCI Bus, SCSI Bus, USB Bus
- 24. What is Memory Organization? Discuss different types of Memory Organization in Computer System.
- 25. Computer Organization Q and A
- 26. Write short note on improving cache performance methods in detail?
- 27. What is Multiprocessor? Explain inter process communication in detail?
- 28. Briefly explain the concept of pipelining in detail?
- 29. Discuss the following in detail: RISC architecture, Vector processing?
- 30. Define the instruction format? Explain I/O System in detail?
- 31. Explain the design of arithmetic and logic unit by taking on example?
- 32. Explain how addition and subtraction are performed in fixed point number?
- 33. Explain different modes of data transfer between the central computer and I/O device ?
- 34. Differentiate between Serial and parallel data transfer?
- 35. Explain signed magnitude, signed I's complement and signed 2's complement representation of numbers. Find the range of numbers in all three representations for 8 bit register.
- 36. If cache access time is IOOns, main memory access time is 1000 ns and the hit ratio is 0.9. Find the average access time and also define hit ratio.
- 37. Explain hardwired microprogrammed control unit? What is address sequencer circuit?

- 38. Explain how a stack organized computer executes instructions? What is Stack?
- 39. Draw and explain the memory hierarchy in a digital computer. What are advantages of cache memory over main memory?
- 40. What is Associative memory? Explain the concept of address space and memory space in Virtual memory.
- 41. What is Paging? Explain how paging can be implemented in CPU to access virtual memory.
- 42. Explain SIMD array processor along with its architectural diagram?
- 43. Write short notes on
- 44. Draw the functional and structural views of a computer system and explain in detail?
- 45. Explain general register organization.
- 46. Compare and contrast DMA and I/O processors?
- 47. Define the following: a) Flynn's taxonomy b) Replacement algorithm
- 48. Explain the various pipeline vector processing methods?
- 49. Describe the language features for parallelism?
- 50. What are different addressing modes? Explain them.
- 51. Explain any page replacement algorithm with the help of example?
- 52. What is mapping? Name all the types of cache mapping and explain anyone in detail.
- 53. Explain arithmetic pipeline?
- 54. Write short notes on, a) SIMD, b) Matrix multiplication c) Instruction format
- 55. Differentiate: a) Maskable and non-maskable interrupt b) RISC and CISC
- 56. Computer Organization Previous Years Solved Questions
- 57. Booths algorithm to muliyiply +5 and -15