Mathematical induction is a unique and special way to prove the things, in only two steps.

Step 1. Show that it is true for $n=1$.Step 2. Show that if $n=k$ is true then $n=k+1$ is also true.

For example:
Prob. By principal of mathematical induction prove that $11^{n+2}+12^{2 n+1}$ is divisible by $133, n \in$ N.

Solution.Step $1 P(1)$ - Show it is true for $n=111^{n+2}+12^{2 n+1}=11^{1+2}+12^{2(1)+1}=1331+1728=$ 3059

Yes 3059 is divisible by $133.11^{1+2}+12^{2(1)+1}$ is true.
Step $2 P(k)$ - Assume it is true for $\mathrm{n}=\mathrm{k}$
$11^{\mathrm{k}+2}+12^{2(\mathrm{k})+1}$ is true.
(above line is an assumption only, which we will use as a fact in rest of the solution)

Now, prove that $11^{(k+1)+2}+12^{2(k+1)+1}$ is divisible by 133. (here $n=k+1$ now, $P(k+1)$) We have, $P(k+1)$
$11^{(k+1)+2}+12^{2(k+1)+1}=11^{k+3}+12^{2 k+3}$
$11^{(k+1)+2}+12^{2(k+1)+1}=11^{k+2} \times 11+12^{2 k+1} \times 12^{2}$
$11^{(k+1)+2}+12^{2(k+1)+1}=\left(11^{k+2} \times 11\right)+\left(12^{2 k+1} \times 144\right)$
$11^{(k+1)+2}+12^{2(k+1)+1}=\left(11^{k+2} \times 11\right)+\left(12^{2 k+1} \times(11+133)\right)$
$11^{(k+1)+2}+12^{2(k+1)+1}=\left(11^{k+2}+12^{2 k+1}\right) \times 11+\left(12^{2 n+1} \times 133\right)$
$11^{(k+1)+2}+12^{2(k+1)+1}=\left(\left(11^{k+2}+12^{2 k+1}\right) \times 11\right)+\left(12^{2 n+1} \times 133\right)$

Here $11^{k+2}+12^{2 k+1}$ is divisible by 133 as assumed in $n=k, P(1)$,
And $12^{2 n+1} \times 133$ is multiple of 133 so it is divisible by 133 .
So,
$11^{(k+1)+2}+12^{2(k+1)+1}=(($ divisible by 133$) \times 11)+($ divisible by 133$)$
$11^{(k+1)+2}+12^{2(k+1)+1}=$ divisible by 133.

In this problem
If $n=n$, i.e, $P(1)$ is true then $n=n+1$, i.e, $P(n+1)$ is also true. Hence proved.

Related Posts:

1. SET
2. Relation
3. Net 34
4. prove that- $A X(B \cap C)=(A X B) \cap(A X C)$
5. Prove that- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
6. prove that $-(A \cap B) X(C \cap D)=(A X C) \cap(B X D)$
7. Show that- $(P \cap Q) X(R \cap S)=(P X R) \cap(Q X S)$
8. Binary operations
9. Algebraic structure
10. Group
11. Show that (..., $-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ is group
12. Show that $a * b=b * a$
13. if $a^{*} c=c^{*} a$ and $b^{*} c=c * b$, then $(a * b)^{*} c=c^{*}(a * b)$
14. Undirected Graph and Incident Matrix
15. Prove the following by using the principle of mathematical induction for all $n \in N, 1^{3}+$ $2^{3}+3^{3}+\ldots+n^{3}=[n(n+1) / 2]^{2}$
16. Prove that $\mathrm{G}=\{-1,1, \mathrm{i},-\mathrm{i}\}$ is a group under multiplication.
17. Hasse diagram for the "less than or equal to" relation on the set $S=\{0,1,2,3,4,5\}$
