A Pushdown automata (PDA) works similar as DFA. A DFA can remember a finite amount of information, but a PDA can remember an infinite amount of information. A PDA can be formally described as a 7-tuple (Q, Σ , S, δ , q0, I, F) – - 1. Q: Finite number of states - 2. ∑: Input alphabet - 3. S: Stack - 4. δ: Transition function: $Q \times (\Sigma \cup \{\epsilon\}) \times S \times Q \times S^*$ - 5. q0: Initial state (q0 \in Q) - 6. I: Initial stack top symbol ($I \in S$) - 7. F: Final state PDA = FSM + Stack Where, FSM for finite state machine. Components of PDA are, - 1. Input tape - 2. Control unit - 3. Stack ## **Related Posts:** - 1. Definition of Deterministic Finite Automata - 2. Notations for DFA - 3. How do a DFA Process Strings? - 4. DFA solved examples - 5. Definition Non Deterministic Finite Automata - 6. Moore machine - 7. Mealy Machine - 8. Regular Expression Examples - 9. Regular expression - 10. Arden's Law - 11. NFA with ∈-Moves - 12. NFA with ∈ to DFA Indirect Method - 13. Define Mealy and Moore Machine - 14. What is Trap state? - 15. Equivalent of DFA and NFA - 16. Properties of transition functions - 17. Mealy to Moore Machine - 18. Moore to Mealy machine - 19. Diiference between Mealy and Moore machine - 20. Remove ∈ transitions from NFA - 21. TOC 1 - 22. Diiference between Mealy and Moore machine - 23. RGPV TOC What do you understand by DFA how to represent it - 24. What is Regular Expression - 25. What is Regular Set in TOC - 26. RGPV short note on automata - 27. RGPV TOC properties of transition functions - 28. RGPV TOC What is Trap state - 29. DFA which accept 00 and 11 at the end of a string - 30. CFL are not closed under intersection - 31. NFA to DFA | RGPV TOC - 32. Moore to Mealy | RGPV TOC PYQ - 33. DFA accept even 0 and even 1 |RGPV TOC PYQ - 34. Short note on automata | RGPV TOC PYQ - 35. DFA ending with 00 start with 0 no epsilon | RGPV TOC PYQ - 36. DFA ending with 101 | RGPV TOC PYQ - 37. Construct DFA for a power n, $n \ge 0$ || RGPV TOC - 38. Construct FA divisible by 3 | RGPV TOC PYQ - 39. Construct DFA equivalent to NFA | RGPV TOC PYQ - 40. RGPV Define Mealy and Moore Machine - 41. RGPV TOC Short note on equivalent of DFA and NFA - 42. RGPV notes Write short note on NDFA - 43. Minimization of DFA - 44. Construct NFA without ∈ - 45. CNF from S->aAD;A->aB/bAB;B->b,D->d. - 46. NDFA accepting two consecutive a's or two consecutive b's. - 47. Regular expresion to CFG - 48. Regular expression to Regular grammar - 49. Grammar is ambiguous. S → aSbS|bSaS|€ - 50. leftmost and rightmost derivations - 51. Construct Moore machine for Mealy machine - 52. RGPV TOC PYOs - 53. Introduction to Automata Theory