Table of Contents

+

Basic steps for construction of RD parser:

Predictive LL (1) parser

The data structure used by LL(1)

Construction of Predictive LL (1) Parser

FIRST function

FOLLOW function

A parser that uses collection of recursive procedures for parsing the given input string is called Recursive descent (RD) parser.

Basic steps for construction of RD parser:

- 1. The R.H.S. of the rule is directly converted into program code symbol by symbol.
- 2. If the input is non-terminal then a call to the procedure corresponding to the non-terminal is made.
- 3. If the input is terminal then it is matched with the look ahead from input. The lookahead pointer has to be advanced on matching of the input symbol.
- 4. If the production rule has many alternates then all these alternates has to be combine into a single body of procedure.
- 5. The parser should be activated by a procedure corresponding to the start symbol.

Predictive LL (1) parser

This top down parsing algorithm is of non- recursive type. In this type of parsing a table is built. for LL(1):

The first L means the input is scanned from left to right.

The second L means it uses left most derivation for input string. & the number 1 in the input symbol (look-ahead) to predict the parsing process.

The data structure used by LL(1)

- Input Buffer
- Stack
- Parsing table

Construction of Predictive LL (1) Parser

This parser is based on two very important function & those are FIRST and FOLLOW.

For construction of predictive LL(1) parser we have to follow the following steps:

- 1. Computation of FIRST and FOLLOW function.
- 2. Construct the predictive parsing table using FIRST and FOLLOW functions.
- 3. Parse the input string with the help of predictive parsing table.

FIRST function

Following are the rules used to compute the FIRST functions.

- If the terminal symbol a the FIRST (a) = {a}.
- If there is a rule $X \rightarrow e$ then FIRST $(X) = \{e\}$.
- For the rule A->X1 X2 X3Xk FIRST (A) = (FIRST (X1) U FIRST (X2) U FIRST (X3) U FIRST (Xk).

Where K Xj \leq n such that $1 \leq$ j \leq k-1.

FOLLOW function

The rule of computing FOLLOW function are as given below:

- For the start symbol S place \$ in FOLLOW(S).
- If there is a production A -> aBb then everything in FIRST(b) without e is to be placed in FOLLOW(B).
- If there is a production A -> aBb or A -> aB and FIRST (b) ={e} then FOLLOW (A) =
 FOLLOW(B) or FOLLOW(B) = FOLLOW (A). That means everything in FOLLOW (A) is in
 FOLLOW (B).