
Specification & Recognition of Tokens

EasyExamNotes.com Specification & Recognition of Tokens

First know about Lexical Analysis:

The lexical analyzer breaks syntaxes into a series of tokens, by removing any1.
whitespace or comments in the source code.
If the lexical analyzer finds a token invalid, it generates an error. It reads character2.
streams from the source code, checks for legal tokens, and passes the data to the
syntax analyzer when it demands.

What is Token ?

In programming language, keywords, constants, identifiers, strings, numbers, operators and
punctuations symbols can be considered as tokens.For example, in C language, the variable
declaration lineint value = 100;contains the
tokens:int (keyword), value (identifier), = (operator), 100 (constant) and ; (symbol).

Lexeme Token

= EQUAL_OP

* MULT_OP

, COMMA

(LEFT_PAREN

Specification & Recognition of Tokens

EasyExamNotes.com Specification & Recognition of Tokens

Specifications of Tokens:

Let us understand how the language theory undertakes the following terms:

Alphabets1.
Strings2.
Special symbols3.
Language4.
Longest match rule5.
Operations6.
Notations7.
Representing valid tokens of a language in regular expression8.
Finite automata9.

1. Alphabets: Any finite set of symbols

{0,1} is a set of binary alphabets,
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} is a set of Hexadecimal alphabets,
{a-z, A-Z} is a set of English language alphabets.

2. Strings: Any finite sequence of alphabets is called a string.

3. Special symbols: A typical high-level language contains the following symbols:

Arithmetic Symbols Addition(+), Subtraction(-), Multiplication(*), Division(/)

Punctuation Comma(,), Semicolon(;), Dot(.)

Assignment =

https://easyexamnotes.com/what-is-regular-expression/

Specification & Recognition of Tokens

EasyExamNotes.com Specification & Recognition of Tokens

Special assignment +=, -=, *=, /=

Comparison ==, !=. <. <=. >, >=

Preprocessor #

4. Language: A language is considered as a finite set of strings over some finite set of
alphabets.

5. Longest match rule: When the lexical analyzer read the source-code, it scans the code
letter by letter and when it encounters a whitespace, operator symbol, or special symbols it
decides that a word is completed.

6. Operations: The various operations on languages are:

Union of two languages L and M is written as, L U M = {s | s is in L or s is in M}1.
Concatenation of two languages L and M is written as, LM = {st | s is in L and t is in M}2.
 The Kleene Closure of a language L is written as, L* = Zero or more occurrence of3.
language L.

7. Notations: If r and s are regular expressions denoting the languages L(r) and L(s), then

Union : L(r)UL(s)1.
Concatenation : L(r)L(s)2.
Kleene closure : (L(r))*3.

8. Representing valid tokens of a language in regular expression:If x is a regular expression,
then:

Specification & Recognition of Tokens

EasyExamNotes.com Specification & Recognition of Tokens

x* means zero or more occurrence of x.
x+ means one or more occurrence of x.

9. Finite automata: Finite automata is a state machine that takes a string of symbols as input
and changes its state accordingly.If the input string is successfully processed and the
automata reaches its final state, it is accepted.The mathematical model of finite automata
consists of:

Finite set of states (Q)
Finite set of input symbols (Σ)
One Start state (q0)
Set of final states (qf)
Transition function (δ)

The transition function (δ) maps the finite set of state (Q) to a finite set of input symbols (Σ),
Q × Σ ➔ Q

Related Posts:
Introduction to Compiler1.
Analysis and synthesis model of compilation2.
Bootstrapping and Porting3.
Lexical Analyzer: Input Buffering4.
Storage Allocation Strategies5.
Type Checking6.
Front end and back end of the compiler7.
LEX8.
Analysis synthesis model of compilation9.

https://easyexamnotes.com/introduction-to-compiler/
https://easyexamnotes.com/analysis-and-synthesis-model-of/
https://easyexamnotes.com/bootstrapping-n-po/
https://easyexamnotes.com/input-buffering/
https://easyexamnotes.com/storage-allocation-strategies/
https://easyexamnotes.com/type-checking-2/
https://easyexamnotes.com/front-end-and-back-end-of-compiler/
https://easyexamnotes.com/lex/
https://easyexamnotes.com/analysis-synthesis/

Specification & Recognition of Tokens

EasyExamNotes.com Specification & Recognition of Tokens

Data structure in CD10.
Register allocation and assignment11.
Loops in flow graphs12.
Dead code elimination13.
Syntax analysis CFGs14.
L-attribute definition15.
Operator precedence parsing16.
Analysis of syntax directed definition17.
Recursive descent parser18.
Function and operator overloading19.
Storage allocation strategies20.
Equivalence of expression in type checking21.
Storage organization22.
Parameter passing23.
Run time environment24.
Type checking25.
Code generation issue in design of code generator26.
Boolean expression27.
Declaration and assignment in intermediate code generation28.
Code optimization29.
Sources of optimization of basic blocks30.
Loop optimization31.
Global data flow analysis32.
Data flow analysis of structure flow graph (SFG)33.

https://easyexamnotes.com/data-structure-in-cd/
https://easyexamnotes.com/register-allocation-and-assignment/
https://easyexamnotes.com/loops-in-flow-graphs/
https://easyexamnotes.com/dead-code-elimination/
https://easyexamnotes.com/cfgs_61/
https://easyexamnotes.com/l-attribute-definition/
https://easyexamnotes.com/operator-precedence-parsing/
https://easyexamnotes.com/analysis-of-syntax-directed-definition/
https://easyexamnotes.com/recursive-descent-parser/
https://easyexamnotes.com/function-and-operator-overloading/
https://easyexamnotes.com/storage-allocation-strategies-2/
https://easyexamnotes.com/equivalence-of-expression-in-type-checking/
https://easyexamnotes.com/storage-organization/
https://easyexamnotes.com/parameter-passing/
https://easyexamnotes.com/run-time-environment/
https://easyexamnotes.com/type-checking-3/
https://easyexamnotes.com/code-generation-issue-in-design-of-code-generator/
https://easyexamnotes.com/boolean-expression/
https://easyexamnotes.com/declaration-and-assignment-in-intermediate-code-generation/
https://easyexamnotes.com/code-optimization/
https://easyexamnotes.com/sources-of-optimization-of-basic-blocks/
https://easyexamnotes.com/loop-optimization/
https://easyexamnotes.com/global-data-flow-analysis/
https://easyexamnotes.com/data-flow-analysis-of-structure-flow-graph/

