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First know about Lexical Analysis:

The lexical analyzer breaks syntaxes into a series of tokens, by removing any1.
whitespace or comments in the source code.
If the lexical analyzer finds a token invalid, it generates an error. It reads character2.
streams from the source code, checks for legal tokens, and passes the data to the
syntax analyzer when it demands.

What is Token ?

In programming language, keywords, constants, identifiers, strings, numbers, operators and
punctuations symbols can be considered as tokens.For example, in C language, the variable
declaration lineint value = 100;contains the
tokens:int (keyword), value (identifier), = (operator), 100 (constant) and ; (symbol).

Lexeme Token

= EQUAL_OP

* MULT_OP

, COMMA

( LEFT_PAREN



Specification & Recognition of Tokens

EasyExamNotes.com Specification & Recognition of Tokens

Specifications of Tokens:

Let us understand how the language theory undertakes the following terms:

Alphabets1.
Strings2.
Special symbols3.
Language4.
Longest match rule5.
Operations6.
Notations7.
Representing valid tokens of a language in regular expression8.
Finite automata9.

1. Alphabets: Any finite set of symbols 

{0,1} is a set of binary alphabets, 
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} is a set of Hexadecimal alphabets, 
{a-z, A-Z} is a set of English language alphabets.

2. Strings: Any finite sequence of alphabets is called a string.

3. Special symbols: A typical high-level language contains the following symbols:

Arithmetic Symbols Addition(+), Subtraction(-), Multiplication(*), Division(/)

Punctuation Comma(,), Semicolon(;), Dot(.)

Assignment =

https://easyexamnotes.com/what-is-regular-expression/
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Special assignment +=, -=, *=, /=

Comparison ==, !=. <. <=. >, >=

Preprocessor #

4. Language: A language is considered as a finite set of strings over some finite set of
alphabets.

5. Longest match rule: When the lexical analyzer read the source-code, it scans the code
letter by letter and when it encounters a whitespace, operator symbol, or special symbols it
decides that a word is completed.

6. Operations: The various operations on languages are:

Union of two languages L and M is written as, L U M = {s | s is in L or s is in M}1.
Concatenation of two languages L and M is written as, LM = {st | s is in L and t is in M}2.
 The Kleene Closure of a language L is written as, L* = Zero or more occurrence of3.
language L.

7. Notations: If r and s are regular expressions denoting the languages L(r) and L(s), then

Union : L(r)UL(s)1.
Concatenation : L(r)L(s)2.
Kleene closure : (L(r))*3.

8. Representing valid tokens of a language in regular expression:If x is a regular expression,
then:
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x* means zero or more occurrence of x.
x+ means one or more occurrence of x.

9. Finite automata: Finite automata is a state machine that takes a string of symbols as input
and changes its state accordingly.If the input string is successfully processed and the
automata reaches its final state, it is accepted.The mathematical model of finite automata
consists of:

Finite set of states (Q)
Finite set of input symbols (Σ)
One Start state (q0)
Set of final states (qf)
Transition function (δ)

The transition function (δ) maps the finite set of state (Q) to a finite set of input symbols (Σ),
Q × Σ ➔ Q
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