
Type checking

EasyExamNotes.com Type checking

TYPE CHECKING

Introduction:

The compiler must perform static checking (checking done at compiler time).This ensures
that certain types of programming errors will be detected and reported.

A compiler must check that the source program follows both the syntactic and semantic
conversions of the source language. This checking is called static checking example of static
checks include.

Some example of static checks is:

Type checks: A compiler should report an error if an operator is applied to an incompatible
operand.

Flow-of-control checks: Statements that cause flow of control to leave a construct must have
some place to which to transfer flow of control. For example, branching to non-existent
labels.

Uniqueness checks: Objects should be defined only once. This is true in many languages.

Name-related checks: Sometimes, the same name must appear two or more times. For
example, in Ada the name of a block must appear both at the beginning of the block and at
the end.

A compiler should report an error if an operator is applied to an incompatible operand. This
checking is called Type checking.

Type information gathered by a type checker may be needed when code is generated. For



Type checking

EasyExamNotes.com Type checking

example, arithmetic operators may be different at the machine level for different types of
operands (real and integer).

TYPE SYSTEM:

The type analysis and type checking is an important activity done in the semantic analysis
phase. The need for type checking is:

To detect the errors arising in the expression due to incompatible operand.
To generate intermediate code for expressions and statements. Typically language
supports two types of data types- basic and constructed.

The basic data type are- integer, character, and real, Boolean, enumerated data type. And
Arrays, record (structure),set and pointer are the constructed types. The constructed data
types are build using basic data types.

Fig 1:- Position of Type checking

Type Expression: Type of a language construct. It is either a basic type or is formed by
applying an operator called a type constructor to other type expressions.

A type system is a collection of rules for assigning type expression to the various parts of a
program. A type checker implements a type system. Different type system may be used by
different compilers or processors of the system Language.

Checking done by a compiler is said to be static checking of types, while checking done
when the target program runs is terminal dynamic checking of types.

https://4.bp.blogspot.com/-fL1VMFDxXXI/WDxAsfoQndI/AAAAAAAACb0/kYn6ag30LJgLicmlbqvY9w82tandt-6wwCLcB/s1600/TYPE.png


Type checking

EasyExamNotes.com Type checking

A source type system eliminates the need for dynamic checking for type errors because it
allows us to determine statically that these errors cannot occur when the target program
runs.
Type checking should have a property of error recovery.

Related Posts:
Introduction to Compiler1.
Analysis and synthesis model of compilation2.
Bootstrapping and Porting3.
Lexical Analyzer: Input Buffering4.
Storage Allocation Strategies5.
Type Checking6.
Specification & Recognition of Tokens7.
Front end and back end of the compiler8.
LEX9.
Analysis synthesis model of compilation10.
Data structure in CD11.
Register allocation and assignment12.
Loops in flow graphs13.
Dead code elimination14.
Syntax analysis CFGs15.
L-attribute definition16.
Operator precedence parsing17.
Analysis of syntax directed definition18.
Recursive descent parser19.
Function and operator overloading20.
Storage allocation strategies21.
Equivalence of expression in type checking22.

https://easyexamnotes.com/introduction-to-compiler/
https://easyexamnotes.com/analysis-and-synthesis-model-of/
https://easyexamnotes.com/bootstrapping-n-po/
https://easyexamnotes.com/input-buffering/
https://easyexamnotes.com/storage-allocation-strategies/
https://easyexamnotes.com/type-checking-2/
https://easyexamnotes.com/specification-recognition-of-tokens_4/
https://easyexamnotes.com/front-end-and-back-end-of-compiler/
https://easyexamnotes.com/lex/
https://easyexamnotes.com/analysis-synthesis/
https://easyexamnotes.com/data-structure-in-cd/
https://easyexamnotes.com/register-allocation-and-assignment/
https://easyexamnotes.com/loops-in-flow-graphs/
https://easyexamnotes.com/dead-code-elimination/
https://easyexamnotes.com/cfgs_61/
https://easyexamnotes.com/l-attribute-definition/
https://easyexamnotes.com/operator-precedence-parsing/
https://easyexamnotes.com/analysis-of-syntax-directed-definition/
https://easyexamnotes.com/recursive-descent-parser/
https://easyexamnotes.com/function-and-operator-overloading/
https://easyexamnotes.com/storage-allocation-strategies-2/
https://easyexamnotes.com/equivalence-of-expression-in-type-checking/


Type checking

EasyExamNotes.com Type checking

Storage organization23.
Parameter passing24.
Run time environment25.
Code generation issue in design of code generator26.
Boolean expression27.
Declaration and assignment in intermediate code generation28.
Code optimization29.
Sources of optimization of basic blocks30.
Loop optimization31.
Global data flow analysis32.
Data flow analysis of structure flow graph (SFG)33.

https://easyexamnotes.com/storage-organization/
https://easyexamnotes.com/parameter-passing/
https://easyexamnotes.com/run-time-environment/
https://easyexamnotes.com/code-generation-issue-in-design-of-code-generator/
https://easyexamnotes.com/boolean-expression/
https://easyexamnotes.com/declaration-and-assignment-in-intermediate-code-generation/
https://easyexamnotes.com/code-optimization/
https://easyexamnotes.com/sources-of-optimization-of-basic-blocks/
https://easyexamnotes.com/loop-optimization/
https://easyexamnotes.com/global-data-flow-analysis/
https://easyexamnotes.com/data-flow-analysis-of-structure-flow-graph/

