
A* and AO* Search Algorithm

EasyExamNotes.com A* and AO* Search Algorithm

A* Search Algorithm

Introduction

A* Search finds the shortest path between two points by efficiently exploring possible routes.
It uses a heuristic to estimate the distance to the goal and prioritizes paths that seem most
promising.

Overview: A widely used pathfinding and graph traversal algorithm known for its efficiency
and accuracy in finding the shortest path between two points.

Efficiency and Accuracy: Excels in finding the shortest path due to its informed search
strategy.

Applications: Widely used in various applications, including:

Robotics
Games
Maps
Navigation systems
Resource planning

Key Concepts – Heuristic Function

Definition: A heuristic function, often denoted as ‘h’, estimates the cost of reaching the

A* and AO* Search Algorithm

EasyExamNotes.com A* and AO* Search Algorithm

goal from a given node. It provides an informed way to guess the remaining distance
to the goal.
Importance in Prioritization: The heuristic function plays a crucial role in prioritizing
which nodes to explore during the search. By estimating the distance to the goal, it
guides the algorithm towards more promising paths, potentially avoiding unnecessary
exploration of less likely paths.
Impact on Search Speed: A good heuristic function can significantly speed up the
search process. By effectively guiding the exploration towards the goal, it helps reduce
the number of nodes that need to be examined. This can be particularly important in
large or complex search spaces where exhaustive exploration is computationally
expensive.

Cost Function

Definition: The cost function, often denoted as ‘g’, determines the cost of moving from
one node to another. This cost can represent various factors, such as distance, time, or
energy, depending on the specific problem.
Combination with Heuristic: The cost function is combined with the heuristic function
to calculate the total cost of a path. The total cost, often denoted as ‘f’, is typically
calculated as:

f(n) = g(n) + h(n)

A* and AO* Search Algorithm

EasyExamNotes.com A* and AO* Search Algorithm

where:

‘f(n)’ is the total cost of the path through node ‘n’
‘g(n)’ is the cost of reaching node ‘n’ from the start node
‘h(n)’ is the heuristic estimate of the cost from node ‘n’ to the goal node

Open and Closed Lists

Open List:
The open list keeps track of nodes that have been discovered but not yet
explored.
It acts as a frontier, holding nodes that are candidates for expansion.

Closed List:
The closed list stores nodes that have already been explored.
This prevents the algorithm from revisiting nodes and getting stuck in cycles.

Algorithm Steps

Initialization: Begin with a start node and an open list containing only the start node.1.
Set the start node’s g value (cost from start) to 0, its h value (heuristic estimate to
goal) to its initial estimate, and its f value (total cost) to g + h. Create an empty
closed list.

A* and AO* Search Algorithm

EasyExamNotes.com A* and AO* Search Algorithm

Node Selection:2.
If the open list is empty, no path exists; terminate.
Otherwise, select the node from the open list with the lowest f value. Call this
node BESTNODE.

Expansion and Goal Check:3.
Remove BESTNODE from the open list and add it to the closed list.
If BESTNODE is the goal node, the path has been found; terminate and
reconstruct the path by tracing back from the goal node to the start node.
Otherwise, generate the successors (neighbors) of BESTNODE.

Successor Evaluation: For each SUCCESSOR of BESTNODE:4.
Set SUCCESSOR to point back to BESTNODE.
Compute g(SUCCESSOR) = g(BESTNODE) + the cost of moving from BESTNODE
to SUCCESSOR.
If SUCCESSOR is already on the open list:

Compare the new path cost to SUCCESSOR with its existing g value.
If the new path is cheaper, update SUCCESSOR‘s g value and its parent
link to BESTNODE.

If SUCCESSOR is already on the closed list:
Compare the new path cost to SUCCESSOR with its existing g value.
If the new path is cheaper, update SUCCESSOR‘s g value, its parent link to
BESTNODE, and propagate the improvement to its successors (re-evaluate
their costs).

If SUCCESSOR is not on either list:
Add SUCCESSOR to the open list.
Set its parent link to BESTNODE.
Compute f(SUCCESSOR) = g(SUCCESSOR) + h(SUCCESSOR).

Iteration: Repeat steps 2-4 until a solution is found or the open list is empty. 5.

A* and AO* Search Algorithm

EasyExamNotes.com A* and AO* Search Algorithm

Admissibility and Optimality

Admissibility
An algorithm is admissible if it guarantees finding the optimal path to the goal, if
one exists.
A* is admissible if the heuristic function never overestimates the actual cost to
reach the goal.

Optimality
An algorithm is optimal if it finds the optimal path by exploring the fewest
possible nodes.
A* is optimal under certain conditions, including:

The heuristic function is consistent (satisfies the triangle inequality).
The search space is a tree or the algorithm uses a graph search variant
that prevents revisiting nodes on a less costly path.

Difference between A* and AO* Search Techniques

Algorithm Graph Description

A* OR Finds the shortest path between two points

AO* AND-OR Finds the most cost-effective path between two points

A* and AO* Search Algorithm

EasyExamNotes.com A* and AO* Search Algorithm

A* and AO* Search Algorithm

What is AO* ?

AO* is a knowledge representation and problem-solving technique for searching in
AND-OR graphs.
It is a generalization of the A* algorithm that can handle problems with multiple
possible solutions.
It is particularly well-suited for problems with uncertain or incomplete information.

How does AO* work ?

AO* searches the graph by expanding the most promising nodes first.
It uses a heuristic function to estimate the cost of reaching a goal from a given node.
It also uses a cost function to keep track of the cost of reaching the current node.
AO* continues searching until it finds a solution that satisfies all the constraints of the
problem.

What are the advantages of AO* ?

It can handle problems with multiple possible solutions.
It is efficient for problems with large or infinite search spaces.
It can handle problems with uncertain or incomplete information.

What are the disadvantages of AO* ?

A* and AO* Search Algorithm

EasyExamNotes.com A* and AO* Search Algorithm

It can be computationally expensive for problems with many constraints.
It may not find the optimal solution if the heuristic function is not accurate.

Applications of AO*

AO* can be used in a variety of applications, including:

Game playing
Robotics
Natural language processing
Machine learning

Related posts:

Artificial Intelligence Intelligence Tutorial for Beginners1.
Difference between Supervised vs Unsupervised vs Reinforcement learning2.
What is training data in Machine learning3.
What other technologies do I need to master AI?4.
How Artificial Intelligence (AI) Impacts Your Daily Life ?5.
Like machine learning, what are other approaches in AI ?6.
Best First Search in AI7.
Heuristic Search Algorithm8.
Hill Climbing in AI9.
Knowledge Representation in AI10.
Propositional Logic and Predicate Logic11.
Resolution and refutation in AI12.
Deduction, theorem proving and inferencing in AI13.
Monotonic and non-monotonic reasoning in AI14.

https://easyexamnotes.com/machine-learning/
https://easyexamnotes.com/artificial-intelligence-intelligence-tutorial-for-beginners/
https://easyexamnotes.com/difference-between-supervised-vs-unsupervised-vs-reinforcement-learning-2/
https://easyexamnotes.com/what-is-training-data-in-machine-learning/
https://easyexamnotes.com/what-other-technologies-do-i-need-to-master-ai/
https://easyexamnotes.com/how-artificial-intelligence-ai-impacts-your-daily-life/
https://easyexamnotes.com/like-machine-learning-what-are-other-approaches-in-ai/
https://easyexamnotes.com/best-first-search-in-ai/
https://easyexamnotes.com/heuristic-search-algorithm/
https://easyexamnotes.com/hill-climbing-in-ai/
https://easyexamnotes.com/knowledge-representation-in-ai/
https://easyexamnotes.com/propositional-logic-and-predicate-logic/
https://easyexamnotes.com/resolution-and-refutation-in-ai/
https://easyexamnotes.com/deduction-theorem-proving-and-inferencing-in-ai/
https://easyexamnotes.com/monotonic-and-non-monotonic-reasoning-in-ai/

A* and AO* Search Algorithm

EasyExamNotes.com A* and AO* Search Algorithm

Probabilistic reasoning in AI15.
Bayes’ Theorem16.
Artificial Intelligence Short exam Notes17.
Transformer Architecture in LLM18.
Input Embedding in Transformers19.
Positional Encoding in Transformers20.
Multi-Head Attention in Transformers21.

https://easyexamnotes.com/probabilistic-reasoning-in-ai/
https://easyexamnotes.com/bayes-theorem/
https://easyexamnotes.com/artificial-intelligence-short-exam-notes/
https://easyexamnotes.com/transformer-architecture-in-llm/
https://easyexamnotes.com/input-embedding-in-transformers/
https://easyexamnotes.com/positional-encoding-in-transformers/
https://easyexamnotes.com/multi-head-attention-in-transformers/

