
Access modifiers

EasyExamNotes.com Access modifiers

In object-oriented programming (OOP) languages, access modifiers are keywords that define
the visibility of classes and their members (such as fields, properties, and methods) and, in
some cases, the class itself. These modifiers regulate how much of a program can use
members or classes.

Different programming languages may use different keywords for access modifiers, but the
basic concepts are similar. Here are common access modifiers:

1. Public access modifier:

Members marked as public are accessible from any part of the program.

Public access modfier example in Java language:

C++

class MyClass {
public:
 int myPublicField;

 void myPublicMethod() {
 cout<<"Welcome to EasyExamNotes.com";
 }
};

2. Private access modifier:

Members marked as private are only accessible within the same class. They are not
accessible from outside the class.

Access modifiers

EasyExamNotes.com Access modifiers

Private access modifier example in C++ language:

C++

class MyClass {
private:
 int myPrivateField;
public:
 void setPrivateField(int value) {
 myPrivateField = value;
 }
};

3. Protected access modifier:

Members marked as protected are accessible within the same class and its subclasses
(derived classes).

Protected access modifier example in C++:

C++

class MyBaseClass {
protected:
 int myProtectedField;
};

class MyDerivedClass : public MyBaseClass {
public:
 void AccessProtectedField() {
 myProtectedField = 10; // Accessible in the derived class
 }

Access modifiers

EasyExamNotes.com Access modifiers

};

Related posts:

Abstraction and encapsulation1.
Object Oriented Programming & Methodolog Viva Voce2.
How to install compiler for code blocks3.
Object Oriented Programming4.
Differences between Procedural and Object Oriented Programming5.
Features of Object Oriented Paradigm6.
Inheritance in Object Oriented Programming7.
Object Oriented Programming8.
Introduction to Object Oriented Thinking & Object Oriented Programming9.
Difference Between Object-Oriented Programming (OOP) and Procedural Programming10.
features of Object oriented paradigm11.
Merits and demerits of Object Oriented methodology12.
Concept of Objects: State, Behavior & Identity of an object13.
Static members of a Class14.
Instances in OOP15.
Message Passing in OOP16.
Construction and destruction of Objects17.

https://easyexamnotes.com/abstraction-and-encapsulation/
https://easyexamnotes.com/object-oriented-programming-methodolog-viva-voce/
https://easyexamnotes.com/how-to-install-compiler-for-code-blocks/
https://easyexamnotes.com/object-oriented-programming/
https://easyexamnotes.com/differences-between-procedural-and-object-oriented-programming/
https://easyexamnotes.com/features-of-object-oriented-paradigm-3/
https://easyexamnotes.com/inheritance-in-object-oriented-programming/
https://easyexamnotes.com/oop/
https://easyexamnotes.com/introduction-to-object-oriented-thinking-object-oriented-programming/
https://easyexamnotes.com/difference-between-object-oriented-programming-oop-and-procedural-programming/
https://easyexamnotes.com/features-of-object-oriented-paradigm/
https://easyexamnotes.com/merits-and-demerits-of-object-oriented-methodology/
https://easyexamnotes.com/concept-of-objects-state-behavior-identity-of-an-object/
https://easyexamnotes.com/static-members-of-a-class/
https://easyexamnotes.com/instances-in-oop/
https://easyexamnotes.com/message-passing-in-oop/
https://easyexamnotes.com/construction-and-destruction-of-objects/

