
Big O notation

EasyExamNotes.com Big O notation

Table of Contents

What Is Big O Notation
Big O notation is a mathematical notation used in computer science to describe the upper
bound or worst-case behavior of an algorithm or function. It represents the maximum growth
rate of the algorithm’s time complexity or space complexity as the input size approaches
infinity.

In Big O notation, we use the symbol “O” followed by a function to express the upper
bound of the algorithm’s complexity.
The function typically represents the number of operations performed by the algorithm
or the amount of space required.

Some Commonly Used Big O Notations:

What is Big O notation
Some commonly used Big O notations:

1. O(1) – Constant Time:
2. O(log n) – Logarithmic Time:
3. O(n) – Linear Time:
4. O(n log n) – Linearithmic Time:
5. O(n2) – Quadratic Time:
6. O(2n) – Exponential Time:

Analyze the time complexity of the algorithm, using Big O notation.
Example 1:
Example 2:
Example 3:

Big O notation

EasyExamNotes.com Big O notation

1. O(1) – Constant Time:

The algorithm’s running time or space requirements remain constant regardless of the input
size.

Example: Accessing an element in an array by index. It takes the same amount of time
regardless of the size of the array.

2. O(log n) – Logarithmic Time:

The algorithm’s running time grows logarithmically with the input size.

Example: Binary search on a sorted array. At each step, the algorithm eliminates half of the
remaining elements, reducing the search space logarithmically.

3. O(n) – Linear Time:

The algorithm’s running time increases linearly with the input size.

Example: Searching for an element in an unsorted array. In the worst case, the algorithm
may need to traverse the entire array to find the element.

4. O(n log n) – Linearithmic Time:

The algorithm’s running time grows in a rate that is proportional to n multiplied by the
logarithm of n.

Example: Merge sort. It divides the input array into smaller halves recursively and merges
them in a sorted order. The time complexity grows in n log n as each division takes O(log n)

Big O notation

EasyExamNotes.com Big O notation

time, and the merging step takes O(n) time.

5. O(n2) – Quadratic Time:

The algorithm’s running time grows quadratically with the input size. It is commonly
associated with nested loops or algorithms that involve comparing every element with every
other element.

Example: Selection sort. It repeatedly finds the minimum element and swaps it with the
current position. The algorithm requires nested loops, resulting in a quadratic time
complexity.

6. O(2n) – Exponential Time:

The algorithm’s running time grows exponentially with the input size.

Example: Generating all subsets of a set. As the size of the set grows, the number of subsets
doubles, leading to an exponential increase in time complexity.

Analyze The Time Complexity Of The
Algorithm, Using Big O Notation.

https://easyexamnotes.com/selection-sort/

Big O notation

EasyExamNotes.com Big O notation

Example 1:

Let n represent the number of elements in the array.

C

#include <stdio.h>

int find_max(int arr[], int length) {
 int max_value = arr[0]; // Assume the first element is the
maximum

 for (int i = 1; i < length; i++) {
 if (arr[i] > max_value) {
 max_value = arr[i];
 }
 }

 return max_value;
}

int main() {
 int arr[] = {5, 8, 2, 10, 3};
 int length = sizeof(arr) / sizeof(arr[0]);

 int max = find_max(arr, length);
 printf("Maximum value: %d\n", max);

 return 0;
}

Initializing max_value with arr[0] takes constant time and can be considered O(1).1.
The for loop iterates through the array from index 1 to length – 1, where length is the2.

Big O notation

EasyExamNotes.com Big O notation

length of the array. The loop runs length – 1 times.
Within the loop, the comparison if (arr[i] > max_value) and the subsequent assignment3.
max_value = arr[i] both take constant time and can be considered O(1).
The return statement also takes constant time and can be considered O(1).4.

Thus, find_max’s time complexity is:

The initialization step takes O(1).
The for loop runs length – 1 times, so it has a time complexity of O(length).
The remaining constant-time operations also take O(1).

As a result, find_max’s time complexity is O(length), where length is the array’s length.

Example 2:

C

#include <stdio.h>

int main() {
 int i;
 for (i = 1; i <= 10; i++) {
 printf("%d\n", i);
 }
 return 0;
}

Big O notation

EasyExamNotes.com Big O notation

The loop runs for a fixed number of iterations, specifically from 1 to 10. Since the loop does
not depend on any variable or input size, the time complexity is constant.

Therefore, the time complexity of this code snippet is O(1).

Example 3:

C

#include <stdio.h>

int main() {
 int i,n;
 printf("Enter a number");
 scanf("%d",&n);
 for (i = 1; i <= n; i++) {
 printf("%d\n", i);
 }
 return 0;
}

The scanf function for getting user input takes constant time and can be considered1.
O(1).
The for loop iterates from 1 to n, where n represents the user input. The loop runs n2.
times.
Inside the loop, the printf function prints the value of i. The printf function takes3.
constant time as it performs a fixed number of operations. Thus, it can be considered

Big O notation

EasyExamNotes.com Big O notation

O(1).

Therefore, the time complexity of the for loop is O(n) since the loop iterates n times.

