EasyExamNotes.com

Big O notation

Table of Contents

What is Big O notation

Some commonly used Big O notations:
1. O(1) - Constant Time:
2. O(log n) - Logarithmic Time:
3. 0(n) - Linear Time:
4. O(n log n) - Linearithmic Time:
5. 0(n2) - Quadratic Time:
6. O(2n) - Exponential Time:

Analyze the time complexity of the algorithm, using Big O notation.
Example 1:
Example 2:
Example 3:

What Is Big O Notation

Big O notation is a mathematical notation used in computer science to describe the upper
bound or worst-case behavior of an algorithm or function. It represents the maximum growth
rate of the algorithm’s time complexity or space complexity as the input size approaches
infinity.

 In Big O notation, we use the symbol “O” followed by a function to express the upper

bound of the algorithm’s complexity.

e The function typically represents the number of operations performed by the algorithm
or the amount of space required.

Some Commonly Used Big O Notations:

1. O(1) - Constant Time:

The algorithm’s running time or space requirements remain constant regardless of the input

EasyExamNotes.com Big O notation



EasyExamNotes.com

Big O notation

size.

Example: Accessing an element in an array by index. It takes the same amount of time
regardless of the size of the array.

2. O(log n) - Logarithmic Time:
The algorithm’s running time grows logarithmically with the input size.

Example: Binary search on a sorted array. At each step, the algorithm eliminates half of the
remaining elements, reducing the search space logarithmically.

3. O(n) - Linear Time:
The algorithm’s running time increases linearly with the input size.

Example: Searching for an element in an unsorted array. In the worst case, the algorithm
may need to traverse the entire array to find the element.

4. O(n log n) - Linearithmic Time:

The algorithm’s running time grows in a rate that is proportional to n multiplied by the
logarithm of n.

Example: Merge sort. It divides the input array into smaller halves recursively and merges
them in a sorted order. The time complexity grows in n log n as each division takes O(log n)
time, and the merging step takes O(n) time.

EasyExamNotes.com Big O notation



EasyExamNotes.com

Big O notation

5. O(n°) - Quadratic Time:

The algorithm’s running time grows quadratically with the input size. It is commonly
associated with nested loops or algorithms that involve comparing every element with every
other element.

Example: Selection sort. It repeatedly finds the minimum element and swaps it with the
current position. The algorithm requires nested loops, resulting in a quadratic time
complexity.

6. O(2") - Exponential Time:

The algorithm’s running time grows exponentially with the input size.

Example: Generating all subsets of a set. As the size of the set grows, the number of subsets
doubles, leading to an exponential increase in time complexity.

Analyze The Time Complexity Of The
Algorithm, Using Big O Notation.

Example 1:

Let n represent the number of elements in the array.

EasyExamNotes.com Big O notation


https://easyexamnotes.com/selection-sort/

EasyExamNotes.com

Big O notation

#include <stdio.h>

int find max(int arr[], int length) {
int max value = arr[0];

for (int 1 = 1; i < length; i++) {
if (arr[i] > max value) {
max value = arr[i];
}
}

return max value;

main() {
int arr[] = {5, 8, 2, 10, 3};
int length = sizeof(arr) / sizeof(arr[0]);

int max = find max(arr, length);
printf("Maximum value: %d\n", max);

return 0;

1. Initializing max_value with arr[0] takes constant time and can be considered O(1).

2. The for loop iterates through the array from index 1 to length - 1, where length is the
length of the array. The loop runs length - 1 times.

3. Within the loop, the comparison if (arr[i] > max_value) and the subsequent assignment
max_value = arrf[i] both take constant time and can be considered O(1).

4. The return statement also takes constant time and can be considered O(1).

EasyExamNotes.com Big O notation



EasyExamNotes.com

Big O notation

Thus, find_max’s time complexity is:

» The initialization step takes O(1).
 The for loop runs length - 1 times, so it has a time complexity of O(length).
* The remaining constant-time operations also take O(1).

As a result, find_max’s time complexity is O(length), where length is the array’s length.

Example 2:

.'I
#include <stdio.h>

int main() {
int i;

for (1 = 1; i <= 10; i++) {
printf("%sd\n", 1i);

}

return 0;

The loop runs for a fixed number of iterations, specifically from 1 to 10. Since the loop does
not depend on any variable or input size, the time complexity is constant.

Therefore, the time complexity of this code snippet is O(1).

EasyExamNotes.com Big O notation



EasyExamNotes.com

Big O notation

Example 3:

.'I
#include <stdio.h>

int main() {
int i,n;
printf("Enter a number");
scanf("%sd",&n) ;

for (1 = 1; i <= n; i++) {
printf("%sd\n", 1i);

}

return 0;

1. The scanf function for getting user input takes constant time and can be considered
O(1).

2. The for loop iterates from 1 to n, where n represents the user input. The loop runs n
times.

3. Inside the loop, the printf function prints the value of i. The printf function takes
constant time as it performs a fixed number of operations. Thus, it can be considered
O(1).

Therefore, the time complexity of the for loop is O(n) since the loop iterates n times.

EasyExamNotes.com Big O notation



EasyExamNotes.com

Big O notation

EasyExamNotes.com Big O notation



