Set is a collection of definite well defined objects.

Set is denoted by capital letter.
For example:
$A=\{a, b, c, d, e\}$

BINARY OPERATIONS ON A SET

Let,

G à a non-empty set
GXG $=\{(a, b): a \in G, b \in G\}$.
Above line is read as: G cross G equal to (a, b) such that ' a ' belongs to ' G ', ' b ' belongs to ' G '.
If
$\mathrm{f}: \mathrm{GXG}=\mathrm{G}$,

Above line is read as ' f ' is such that G cross G is equal to G .

Here ' f ' is an operation of ' X ' on two groups ' G ' and ' G '.
The output of 'GXG' is also a ' G ' so this type of operation is known as Binary Operation on a set G.

And,

Operation ' f ' on ' G ' and ' G ' can be denoted as 'GfG' , or 'afb' where ($a \in G, b \in G$).
+, x, etc symbols are used in Binary Operations.

Binary Operations examples:-

1) $\mathrm{a}+\mathrm{b} \in \mathrm{G}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$.

Above line is read as ' a ' plus ' b ' belongs to ' G ', for all ' a ', ' b ' belongs to ' G '.
Here, \forall à for all.
2) $\mathrm{a} * \mathrm{~b}=\mathrm{G}, \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$.
3) Addition of natural numbers is also a natural number.

Natural number are also known as all non-negative or positive numbers ($0,1,2,3,4 \ldots .$.).

If, N à Set of natural numbers
$A+b \in N, \forall a, b \in N$.

Above line is read as ' a ' plus ' b ' belongs to ' N ', for all ' a ', ' b ' \in ' N '.
4) Subtraction is not binary operation on N (natural numbers).

Nà Set of natural numbers.
$3-5=-2 \notin N$, whereas $3,5 \in N$.

Above line is read as three minus five is not belongs to ' N ', whereas three, five belongs to ' N '.
5) Subtraction is binary operation on I (integer numbers).

I -> Set of integer numbers
$3-5=-2 \in I, \forall a, b \in I$.
Related posts:

1. SET
2. Mathematical induction
3. Relation
4. Net 34
5. prove that- $A X(B \cap C)=(A X B) \cap(A X C)$
6. Prove that- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
7. prove that $-(A \cap B) X(C \cap D)=(A X C) \cap(B X D)$
8. Show that- $(\mathrm{P} \cap \mathrm{Q}) \mathrm{X}(\mathrm{R} \cap \mathrm{S})=(\mathrm{PXR}) \cap(\mathrm{QXS})$
9. Algebraic structure
10. Group
11. Show that (..., $-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ is group
12. Show that $a * b=b * a$
13. if $a^{*} c=c^{*} a$ and $b^{*} c=c^{*} b$, then $(a * b)^{*} c=c^{*}\left(a^{*} b\right)$
14. Undirected Graph and Incident Matrix
15. Prove the following by using the principle of mathematical induction for all $n \in N, 1^{3}+$ $2^{3}+3^{3}+\ldots+n^{3}=[n(n+1) / 2]^{2}$
16. Prove that $\mathrm{G}=\{-1,1, \mathrm{i},-\mathrm{i}\}$ is a group under multiplication.
17. Hasse diagram for the "less than or equal to" relation on the set $S=\{0,1,2,3,4,5\}$
