RGPV 2020

Preve that CFL are not closed under intersection?

If L1 and If L2 are two context free languages, their intersection L1 $\,$ n L2 need not be context free.

For example,

$$L1 = \{ a^n b^n c^m \mid n >= 0 \text{ and } m >= 0 \}$$

L1 says number of a's should be equal to number of b's.

L2 =
$$(a^mb^nc^n | n >= 0 \text{ and } m >= 0)$$

L2 says number of b's should be equal to number of c's.

$$L3 = L1 \cap L2 = \{ anbncn | n >= 0 \}$$

L1 intersection L2 says both conditions need to be true.

But push down automata can compare only two. So it cannot be accepted by pushdown automata, hence not context free.

Related Posts:

- RGPV TOC What do you understand by DFA how to represent it
- 2. RGPV short note on automata
- 3. RGPV TOC properties of transition functions
- 4. RGPV TOC What is Trap state
- 5. NFA to DFA | RGPV TOC
- 6. Moore to Mealy | RGPV TOC PYQ
- 7. DFA accept even 0 and even 1 |RGPV TOC PYQ
- 8. Short note on automata | RGPV TOC PYQ
- 9. DFA ending with 00 start with 0 no epsilon | RGPV TOC PYQ

- 10. DFA ending with 101 | RGPV TOC PYQ
- 11. Construct DFA for a power n, n>=0 | RGPV TOC
- 12. Construct FA divisible by 3 | RGPV TOC PYQ
- 13. Construct DFA equivalent to NFA | RGPV TOC PYQ
- 14. RGPV Define Mealy and Moore Machine
- 15. RGPV TOC Short note on equivalent of DFA and NFA
- 16. RGPV notes Write short note on NDFA
- 17. CNF from S->aAD;A->aB/bAB;B->b,D->d.
- 18. NDFA accepting two consecutive a's or two consecutive b's.
- 19. Regular expresion to CFG
- 20. Regular expression to Regular grammar
- 21. Grammar is ambiguous. $S \rightarrow aSbS|bSaS| \in$
- 22. leftmost and rightmost derivations
- 23. Construct Moore machine for Mealy machine
- 24. Definition of Deterministic Finite Automata
- 25. Notations for DFA
- 26. How do a DFA Process Strings?
- 27. DFA solved examples
- 28. Definition Non Deterministic Finite Automata
- 29. Moore machine
- 30. Mealy Machine
- 31. Regular Expression Examples
- 32. Regular expression
- 33. Arden's Law
- 34. NFA with ∈-Moves
- 35. NFA with ∈ to DFA Indirect Method
- 36. Define Mealy and Moore Machine

- 37. What is Trap state?
- 38. Equivalent of DFA and NFA
- 39. Properties of transition functions
- 40. Mealy to Moore Machine
- 41. Moore to Mealy machine
- 42. Diiference between Mealy and Moore machine
- 43. Pushdown Automata
- 44. Remove ∈ transitions from NFA
- 45. TOC 1
- 46. Diiference between Mealy and Moore machine
- 47. What is Regular Expression
- 48. What is Regular Set in TOC
- 49. DFA which accept 00 and 11 at the end of a string
- 50. DFA end with 1 contain 00 | RGPV TOC draw
- 51. RGPV TOC design finite automata problems
- 52. Minimization of DFA
- 53. Construct NFA without ∈
- 54. RGPV TOC PYQs
- 55. Introduction to Automata Theory