- 1. What is the slenderness ratio of a column?
- a) The ratio of its length to its width
- b) The ratio of its length to its cross-sectional area
- c) The ratio of its length to its radius
- d) The ratio of its length to its radius of gyration

Answer: d) The ratio of its length to its radius of gyration

Explanation: The slenderness ratio of a column is defined as the ratio of its effective length to its radius of gyration. It helps determine whether a column will fail due to buckling.

- 2. Which formula is used to calculate the Euler's buckling load for columns?
- a) Rankin's formula
- b) Secant formula
- c) Euler's formula
- d) Newton's formula

Answer: c) Euler's formula

Explanation: Euler's formula is used to calculate the critical buckling load for columns. It is based on the column's length, modulus of elasticity, moment of inertia, and end conditions.

- 3. What is the Kern of a section in a column?
- a) The central part of the section that carries the maximum load
- b) The part of the section that experiences the least stress
- c) The part of the section that remains unaffected by bending
- d) The region where the load is assumed to act for design calculations

Answer: d) The region where the load is assumed to act for design calculations

Explanation: The Kern of a section is the region within the cross-section of a column where the load is assumed to act for design calculations, typically for simplification purposes.

- 4. In which type of column failure does buckling play a significant role?
- a) Tensile failure
- b) Shear failure
- c) Compression failure
- d) Bending failure

Answer: c) Compression failure

Explanation: Buckling is a significant factor in compression failure of columns, where the

column deforms laterally	/ under compressive	load, leading to instability.
--------------------------	---------------------	-------------------------------

- 5. What does Rankin's formula determine in column design?
- a) Buckling load for columns
- b) Direct stress in columns
- c) Bending stress in columns
- d) Eccentric loads on columns

Answer: a) Buckling load for columns

Explanation: Rankin's formula is used to determine the critical buckling load for columns, taking into account the column's dimensions and material properties.

- 6. The Secant formula is used to calculate stresses in columns under which type of load?
- a) Tensile load
- b) Compressive load
- c) Shear load
- d) Bending load

Answer: d) Bending load

Explanation: The Secant formula is used to calculate the stresses in columns under eccentric or bending loads, accounting for the combined effects of direct stress and bending stress.

- 7. What type of vessel is considered in thin pressure vessel theory?
- a) Thick-walled vessel
- b) Spherical vessel
- c) Reinforced vessel
- d) Thin-walled vessel

Answer: d) Thin-walled vessel

Explanation: Thin pressure vessel theory applies to vessels with thin walls relative to their diameter, where stresses are assumed to be uniform across the thickness.

- 8. Which theory is used to determine stress in thin pressure vessels?
- a) Hooke's Law
- b) Poisson's Ratio
- c) Lame's Theory
- d) Thin Shell Theory

Answer: d) Thin Shell Theory

Explanation: Thin Shell Theory is used to determine stress in thin pressure vessels, taking into account the vessel's geometry and internal pressure.

- 9. What causes stress in thin pressure vessels?
- a) External pressure
- b) Internal pressure
- c) Bending moment
- d) Shear force

Answer: b) Internal pressure

Explanation: Stress in thin pressure vessels primarily arises due to the pressure exerted by the fluid or gas inside the vessel.

- 10. What is the change in volume experienced by a thin pressure vessel under internal pressure?
- a) Volume decreases
- b) Volume increases

- c) Volume remains constant
- d) Volume depends on vessel material

Answer: c) Volume remains constant

Explanation: According to thin pressure vessel theory, the volume of the vessel remains constant under internal pressure, assuming the material is elastic and no permanent deformation occurs.

- 11. Which theory of failure is commonly applied in analyzing the stability of columns?
- a) Maximum Principal Stress Theory
- b) Maximum Shear Stress Theory
- c) Maximum Strain Energy Theory
- d) Maximum Distortion Energy Theory

Answer: a) Maximum Principal Stress Theory

Explanation: Maximum Principal Stress Theory is commonly applied in analyzing the stability of columns, where failure is predicted based on the maximum principal stress exceeding the material's strength.

- 12. What is the primary failure mode considered in thin pressure vessel theory?
- a) Tensile failure
- b) Shear failure
- c) Buckling failure
- d) Yielding failure

Answer: a) Tensile failure

Explanation: In thin pressure vessel theory, the primary failure mode considered is tensile failure, where stresses exceed the material's tensile strength, leading to rupture.

- 13. Which parameter determines the stability of a column under compressive load?
- a) Length
- b) Cross-sectional area
- c) Material density
- d) End conditions

Answer: a) Length

Explanation: The length of a column significantly affects its stability under compressive load,

with longer columns being more prone to buckling.
14. What is the primary difference between short and long columns in terms of stability?
a) Short columns are more prone to buckling
b) Long columns are more prone to buckling
c) Short columns experience higher direct stresses
d) Long columns experience higher bending stresses
Answer: b) Long columns are more prone to buckling
Explanation: Long columns are more prone to buckling due to their greater slenderness ratio compared to short columns.
15. Which formula accounts for the combined effects of eccentric loads and direct stresses in columns?
a) Euler's formula
b) Rankin's formula
c) Secant formula
d) Kern formula

Answer: c) Secant formula

Explanation: The Secant formula accounts for the combined effects of eccentric loads and direct stresses in columns, providing a more accurate analysis of column behavior under bending.

Related posts:

- 1. Stones, Brick, Mortar and Concrete MCQs
- 2. Timber ,Glass , Steel and Aluminium MCQS
- 3. Flooring, Roofing, Plumbing and Sanitary Material MCQS
- 4. Paints, Enamels and Varnishes MCQs
- 5. Miscellaneous ConstructionMaterials MCQs
- 6. Surveying &Levelling MCQS
- 7. Theodolite Traversing MCQs
- 8. Tacheometry MCQS
- 9. Curves MCQS
- 10. Hydrographic Survey MCQs
- 11. Drawing of Building Elements MCQS
- 12. Building Planning MCQS
- 13. Building Services MCQs
- 14. Architectural Principles MCQs
- 15. Town Planning & Perspective Drawing MCQs
- 16. Simple Stress and Strains MCQs
- 17. Bending and Shearing Stresses MCQs
- 18. Beam Deflection Methods MCQs
- 19. Torsion of Shafts MCQs
- 20. Review of Fluid Properties MCQs

- 21. Kinematics of Flow MCQs
- 22. Dynamics of Flow MCQs
- 23. Laminar Flow MCQs
- 24. Fluid Mechanics MCQs
- 25. Highway Engineering MCQs
- 26. Bituminous & Cement Concrete Payments MCQS
- 27. Transportation Engineering MCQs
- 28. Airport Planning and Geometrical Elements MCQs
- 29. Airport, Obstructions, Lightning & Traffic control MCQs
- 30. Preliminary and detailed investigation methods MCQs
- 31. Construction equipments MCQs
- 32. Contracts MCQs
- 33. Specifications & Public Works Accounts MCQs
- 34. Site Organization & Systems Approach to Planning MCQs
- 35. Construction Estimation MCQs
- 36. Rate Analysis MCQs
- 37. Detailed Estimates MCQs
- 38. Cost of Works MCQS
- 39. Valuation MCQS
- 40. Marine Construction MCQs
- 41. Harbour Planning MCQs
- 42. Natural Phenomena MCQS
- 43. Marine Structures MCQs
- 44. Docks and Locks MCQS
- 45. Urban Planning MCQs
- 46. Urban Planning MCQs: Sustainability, Finance, and Emerging Concepts
- 47. Urban Planning MCQs

- 48. Traffic transportation systems MCQs
- 49. Development plans MCQS
- 50. Remote Sensing MCQs
- 51. Remote Sensing Platforms and Sensors MCQS
- 52. Geographic Information System MCQS
- 53. Data Models mCQs
- 54. Integrated Applications of Remote sensing and GIS MCQs
- 55. Renewable Energy MCQs
- 56. Renewable Energy Systems Overview MCQ
- 57. Renewable Energy MCQs
- 58. Alternative Energy Sources MCQs
- 59. Electric Energy Conservation MCQs
- 60. Entrepreneurship MCQs
- 61. Motivation MCQS
- 62. Small Business Setup MCQs
- 63. Finance and Accounting MCQs
- 64. Entrepreneurial Sickness and Small Business Growth MCQs
- 65. Design features and construction of Foundations MCQs
- 66. Formwork and Temporary structures MCQs
- 67. Masonry and walls MCQS
- 68. Floor and Roof Construction MCQs
- 69. Earthquake-Resistant Building MCQs
- 70. Virtual work and Energy Principles MCQS
- 71. Indeterminate Structures-I MCQS
- 72. Indeterminate Structures II MCQs
- 73. V Arches and Suspension Cables MCOS
- 74. Rolling loads and Influence Lines MCQS

- 75. Railway Track Construction MCQs
- 76. Railway Track Design and Signaling MCQs
- 77. Bridge Construction Essentials MCQs
- 78. Bridge Construction MCQs
- 79. Tunnels MCQS
- 80. Geology Earth's Processes and Phenomena MCQs
- 81. Mineralogy and crystallography MCQs
- 82. Petrology MCQs
- 83. Structural geology MCQs
- 84. Geology, Remote Sensing, and GIS MCQs
- 85. Waste water Treatment Operations MCQs
- 86. Biological Treatment of waste-water MCQS
- 87. Advanced Waste-water treatment MCQS
- 88. Introduction of Air pollution MCQS
- 89. Air pollution chemistry MCQs
- 90. Undamped Single Degree of Freedom System MCQS
- 91. Damped Single Degree of Freedom System MCQ
- 92. Response to harmonic and periodic vibrations MCQS
- 93. Response to Arbitrary, Step, and Pulse Excitation MCQS
- 94. Multi Degree of Freedom System MCQS
- 95. Structural Engineering MCQs
- 96. Building Services MCQs
- 97. Lift & Escalator MCQS
- 98. Fire-Fighting MCQs
- 99. Acoustics and sound insulation and HVAC system MCQS
- 100. Miscellaneous Services MCQS
- 101. Basic Principles of Structural Design MCQs

- 102. Design of Beams MCQs
- 103. Design of Slabs MCQS
- 104. Columns & Footings MCQs
- 105. Staircases MCQs
- 106. Water Resources MCQs
- 107. Water Supply Systems MCQs
- 108. Water Treatment methods MCQs
- 109. Sewerage Systems MCQS
- 110. Wastewater Analysis & Disposal MCQs
- 111. Irrigation water requirement and Soil-Water-Crop relationship MCQS
- 112. Ground Water and Well irrigation MCQs
- 113. Hydrology MCQs
- 114. Canals and Structures MCQs
- 115. Floods MCQS
- 116. Prefabrication in Construction MCQs
- 117. Prefabricated Construction MCQs
- 118. Design Principles MCQs
- 119. Structural Joint MCQs
- 120. Design of abnormal load MCQS
- 121. Advance Pavement Design MCQs
- 122. Flexible Pavements MCQS
- 123. Rigid Pavements MCQS
- 124. Rigid pavement design MCQs
- 125. Evaluation and Strengthening of Existing Pavements MCQS
- 126. Cost Effective & ECO-Friendly Structures MCQs
- 127. Cost effective construction techniques and equipments MCQs
- 128. Cost effective sanitation MCQS

- 129. Low Cost Road Construction MCQs
- 130. Cost analysis and comparison MCQ
- 131. Turbulent flow MCQS
- 132. Uniform flow in open channels MCQs
- 133. Non uniform flow in open channels MCQs
- 134. Forces on immersed bodies MCQs
- 135. Fluid Machines MCQs
- 136. Intellectual Property Rights MCQs
- 137. Copyright MCQs
- 138. Patents MCQs
- 139. Trade Marks, Designs & GI MCQs
- 140. Contemporary Issues & Enforcement of IPR MCQs
- 141. Concept of EIA MCQs
- 142. Methods of Impact Identification MCQs
- 143. Impact analysis MCQs
- 144. Preparation of written documentation MCQs
- 145. Public Participation in Environmental Decision making MCQs
- 146. Linear Models MCOs
- 147. Transportation Models And Network Models MCQs
- 148. Inventory Models MCQs
- 149. Queueing Models MCQS
- 150. Decision Models MCQs
- 151. Basis of Structural Design and Connection Design MCQS
- 152. Design of Compression and Tension Members MCQs
- 153. Design of Flexural Members MCQs
- 154. Design of Columns and Column Bases MCQs
- 155. Design of Industrial Buildings MCQS

- 156. Hydrological Cycle mCQs
- 157. Hydrological Measurement MCQs
- 158. Groundwater and Well Dynamics MCQs
- 159. Hydrology MCQs
- 160. Hydrology MCQs
- 161. Selection of foundation and Sub-soil exploration/investigation MCQs
- 162. Shallow Foundation MCOs
- 163. Pile foundations MCqs
- 164. Foundations on problematic soil & Introduction to Geosynthetics MCQs
- 165. Retaining Walls and Earth Pressure MCQs
- 166. Types of Bridge Super Structures MCQs
- 167. Design of R.C. Bridge MCQs
- 168. Design of Steel Bridges MCQs
- 169. Pier, Abutment and Wing Walls MCQs
- 170. Foundations and Bearings MCQs
- 171. Engineering Seismology MCQS
- 172. Response Spectrum MCQs
- 173. Aseismic Structural Modelling MCQS
- 174. Design of structure for earthquake resistance MCQS
- 175. Seismic control of structures MCQs
- 176. Introduction to Artificial Intelligence MCQs
- 177. Various types of production systems and search techniques MCQs
- 178. Knowledge Representation and Probabilistic Reasoning MCQS
- 179. Game playing techniques MCQs
- 180. Introduction to learning ,ANN MCQs
- 181. Concrete Structure MCOs
- 182. Damage Assessment MCQs

- 183. Influence on Serviceability and Durability MCQs
- 184. Maintenance and Retrofitting Techniques MCQs
- 185. Materials for Repair and Retrofitting MCQs
- 186. Paradigm Shift in Water Management MCQS
- 187. Sustainable Water Resources Management MCQs
- 188. Integrated Water Resources Management (IWRM) Approach MCQs
- 189. Surface and Subsurface Water Systems MCQS
- 190. Conventional and Non-conventional Techniques for Water Security MCQs
- 191. Cochannel interference reduction MCQs
- 192. IOT Design methodology MCQs
- 193. Optical Communication MCQs
- 194. LTE systems MCQS
- 195. Compression & Image Watermarking MCQs
- 196. Transducer MCQs
- 197. Semiconductor MCQs
- 198. Electrical Circuit Analysis and Laplace Transform MCQs
- 199. Digital Communication Techniques MCQs
- 200. Combustion in CI Engines MCQs