- 1. What is the primary function of a Half Adder?
- a) To perform addition of two binary numbers
- b) To perform addition of multiple binary numbers
- c) To perform subtraction of two binary numbers
- d) To perform logical AND operation

Answer: a) To perform addition of two binary numbers

Explanation: A half adder is a combinational logic circuit that adds two single-digit binary numbers and produces a sum bit (S) and a carry bit (C). It cannot handle carry from previous additions.

- 2. What distinguishes a Full Adder from a Half Adder?
- a) Full Adder has two inputs and one output
- b) Full Adder can handle carry from previous additions
- c) Full Adder only produces a sum bit
- d) Full Adder can only add three binary numbers

Answer: b) Full Adder can handle carry from previous additions

Explanation: Unlike a Half Adder, a Full Adder can handle not only the addition of two binary numbers but also includes an input for the carry from the previous addition.

- 3. What is the primary function of a Half Subtractor?
- a) To perform addition of two binary numbers
- b) To perform subtraction of two binary numbers
- c) To perform logical OR operation
- d) To perform logical XOR operation

Answer: b) To perform subtraction of two binary numbers

Explanation: A half subtractor is a combinational logic circuit used to perform subtraction of two single-digit binary numbers. It produces a difference bit (D) and a borrow bit (B).

- 4. In a Full Subtractor, what does the borrow bit represent?
- a) Borrowed bit from the previous subtraction
- b) Overflow bit
- c) Carry bit
- d) Sign bit

Answer: a) Borrowed bit from the previous subtraction

Explanation: The borrow bit in a Full Subtractor represents the need to borrow from a higher

bit during subtraction, similar to how a carry bit works in a	ddition.	
---	----------	--

- 5. What distinguishes a Parallel Binary Adder from a Serial Adder?
- a) Speed of operation
- b) Number of inputs
- c) Simplicity of design
- d) Handling of inputs

Answer: d) Handling of inputs

Explanation: In a Parallel Binary Adder, all bits of the operands are added simultaneously, whereas in a Serial Adder, addition is performed sequentially, one bit at a time.

- 6. What is the primary advantage of a Fast Adder over traditional adders?
- a) Reduced complexity
- b) Lower power consumption
- c) Higher speed
- d) Compatibility with different data types

Answer: c) Higher speed

Explanation: Fast Adders utilize optimized designs to perform addition operations more quickly compared to traditional adders.

- 7. What is the key feature of a Carry Look Ahead Adder?
- a) It eliminates the need for carry propagation delay
- b) It reduces the number of logic gates
- c) It prioritizes carry generation over addition
- d) It operates in serial mode

Answer: a) It eliminates the need for carry propagation delay

Explanation: Carry Look Ahead Adders pre-calculate carry bits for each bit position, eliminating the need for carry propagation delay seen in ripple carry adders.

- 8. What is the function of a BCD Adder?
- a) To add binary-coded decimal numbers
- b) To subtract binary-coded decimal numbers
- c) To convert binary numbers to decimal
- d) To perform logical operations on binary-coded decimal numbers

Answer: a) To add binary-coded decimal numbers

Explanation: BCD Adders are designed specifically to add binary-coded decimal numbers, which are commonly used in digital systems for representing decimal digits.

- 9. What operation does a Binary Multiplier perform?
- a) Addition
- b) Subtraction
- c) Multiplication
- d) Division

Answer: c) Multiplication

Explanation: Binary Multipliers are circuits designed to perform multiplication of two binary numbers.

- 10. What is the primary function of a Magnitude Comparator?
- a) To compare the magnitudes of two binary numbers
- b) To perform addition of two binary numbers
- c) To perform subtraction of two binary numbers

d) To convert binary numbers to decimal

Answer: a) To compare the magnitudes of two binary numbers

Explanation: A Magnitude Comparator is used to determine whether one binary number is greater than, less than, or equal to another binary number based on their magnitudes.