Construct NFA without \in transitions

Sol.

Step 01: Find \in-closure of ($q 1$), ($q 2$) and ($q 3$).
\in-closure of $(q 1)=\{q 1, q 2, q 3\}$
\in-closure of $(q 2)=\{q 2, q 3\}$
\in-closure of $(q 3)=\{q 3\}$
For each state find the next state for each input. See the table below,

State	0	1	2
$->q 1$	$\{q 1, q 2, q 3\}$	$\{q 2, q 3\}$	$\{q 3\}$
$q 2$	φ	$\{q 2, q 3\}$	$\{q 3\}$
$q 3$	φ	φ	$\{q 3\}$

From the question diagram, it is clear that only with \in input $q 1$ and $q 2$ state can reach to the final state.

So, now without \in input, q 1 and q 2 is also treated as final states.
As shown in diagram below.

Related Posts:

1. Definition of Deterministic Finite Automata
2. Notations for DFA
3. How do a DFA Process Strings?
4. DFA solved examples
5. Definition Non Deterministic Finite Automata
6. Moore machine
7. Mealy Machine
8. Regular Expression Examples
9. Regular expression
10. Arden's Law
11. NFA with \in-Moves
12. NFA with \in to DFA Indirect Method
13. Define Mealy and Moore Machine
14. What is Trap state ?
15. Equivalent of DFA and NFA
16. Properties of transition functions
17. Mealy to Moore Machine
18. Moore to Mealy machine
19. Diiference between Mealy and Moore machine
20. Pushdown Automata
21. Remove \in transitions from NFA
22. TOC 1
23. Diiference between Mealy and Moore machine
24. RGPV TOC What do you understand by DFA how to represent it
25. What is Regular Expression
26. What is Regular Set in TOC
27. RGPV short note on automata
28. RGPV TOC properties of transition functions
29. RGPV TOC What is Trap state
30. DFA which accept 00 and 11 at the end of a string
31. CFL are not closed under intersection
32. NFA to DFA \| RGPV TOC
33. Moore to Mealy | RGPV TOC PYQ
34. DFA accept even 0 and even 1 |RGPV TOC PYQ
35. Short note on automata | RGPV TOC PYQ
36. DFA ending with 00 start with 0 no epsilon \| RGPV TOC PYQ
37. DFA ending with 101 | RGPV TOC PYQ
38. Construct DFA for a power $n, n>=0| | ~ R G P V ~ T O C ~$
39. Construct FA divisible by 3 | RGPV TOC PYQ
40. Construct DFA equivalent to NFA \| RGPV TOC PYQ
41. RGPV Define Mealy and Moore Machine
42. RGPV TOC Short note on equivalent of DFA and NFA
43. RGPV notes Write short note on NDFA
44. Minimization of DFA
45. CNF from $S->a A D ; A->a B / b A B ; B->b, D->d$.
46. NDFA accepting two consecutive a's or two consecutive b's.
47. Regular expresion to CFG
48. Regular expression to Regular grammar
49. Grammar is ambiguous. $\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \in$
50. leftmost and rightmost derivations
51. Construct Moore machine for Mealy machine
52. RGPV TOC PYQs
53. Introduction to Automata Theory
