
RGPV PYQs

NFA with \in

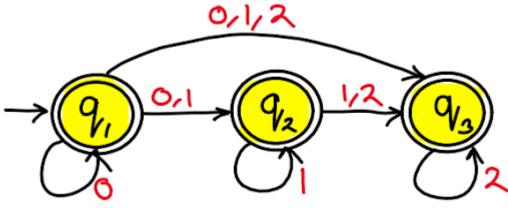
Solution.

Step 01: Find \in -closure of (q1), (q2) and (q3).

- \in -closure of (q1) = {q1, q2, q3}
- \in -closure of (q2) = {q2, q3}
- \in -closure of (q3) = {q3}

For each state find the next state for each input.

See the table below,


State	0	1	2
->q1	{q1,q2,q3}	{q2,q3}	{q3}
q2	φ	{q2,q3}	{q3}
q3	φ	φ	{q3}

From the question diagram, it is clear that only with ∈ input q1 and q2 state can reach to the

final state.

So, now without \in input, q1 and q2 is also treated as final states.

As shown in diagram below.

NFA without ∈

Related posts:

- 1. Definition of Deterministic Finite Automata
- 2. Notations for DFA
- 3. How do a DFA Process Strings?
- 4. DFA solved examples
- 5. Definition Non Deterministic Finite Automata
- 6. Moore machine
- 7. Mealy Machine
- 8. Regular Expression Examples
- 9. Regular expression
- 10. Arden's Law
- 11. NFA with ∈-Moves

- 12. NFA with \in to DFA Indirect Method
- 13. Define Mealy and Moore Machine
- 14. What is Trap state?
- 15. Equivalent of DFA and NFA
- 16. Properties of transition functions
- 17. Mealy to Moore Machine
- 18. Moore to Mealy machine
- 19. Diiference between Mealy and Moore machine
- 20. Pushdown Automata
- 21. TOC 1
- 22. Diiference between Mealy and Moore machine
- 23. RGPV TOC What do you understand by DFA how to represent it
- 24. What is Regular Expression
- 25. What is Regular Set in TOC
- 26. RGPV short note on automata
- 27. RGPV TOC properties of transition functions
- 28. RGPV TOC What is Trap state
- 29. DFA which accept 00 and 11 at the end of a string
- 30. CFL are not closed under intersection
- 31. NFA to DFA | RGPV TOC
- 32. Moore to Mealy | RGPV TOC PYQ
- 33. DFA accept even 0 and even 1 RGPV TOC PYQ
- 34. Short note on automata | RGPV TOC PYQ
- 35. DFA ending with 00 start with 0 no epsilon | RGPV TOC PYQ
- 36. DFA ending with 101 | RGPV TOC PYQ
- 37. Construct DFA for a power n, n>=0 | RGPV TOC
- 38. Construct FA divisible by 3 | RGPV TOC PYQ

- 39. Construct DFA equivalent to NFA | RGPV TOC PYQ
- 40. RGPV Define Mealy and Moore Machine
- 41. RGPV TOC Short note on equivalent of DFA and NFA
- 42. RGPV notes Write short note on NDFA
- 43. Minimization of DFA
- 44. Construct NFA without ∈
- 45. CNF from S->aAD;A->aB/bAB;B->b,D->d.
- 46. NDFA accepting two consecutive a's or two consecutive b's.
- 47. Regular expresion to CFG
- 48. Regular expression to Regular grammar
- 49. Grammar is ambiguous. S → aSbS|bSaS| \in
- 50. leftmost and rightmost derivations
- 51. Construct Moore machine for Mealy machine
- 52. RGPV TOC PYQs
- 53. Introduction to Automata Theory