
Construction and destruction of Objects

EasyExamNotes.com Construction and destruction of Objects

The lifecycle of an object in object-oriented programming (OOP) involves the creation and
destruction of objects.

These areas are uniquely addressed by constructors and destructors, which are special
member functions in languages like C++ and others.

Construction of Objects:

1. Constructor:

Any time a new object of the class is created, a constructor is automatically called.
It initializes the state of the object, allocates resources and carries out some setup
tasks that may be necessary.
Constructors do not have any return type, but they bear the name of their class.

C++

class MyClass {
public:
 // Constructor
 MyClass() {
 // Initialization code goes here
 cout << "Constructor called!";
 }
};

2. Default constructor:

If you don’t write a constructor for your class, the compiler will make one for you.
Such automatic constructor creates an object with default values or uninitialized

Construction and destruction of Objects

EasyExamNotes.com Construction and destruction of Objects

members according to their types.

C++

class MyClass {
 // No explicit constructor, so a default constructor is provided
by the compiler
};

3. Parameterized Constructor:

Constructors can take parameters, allowing you to initialize the object with specific
values.

C++

class Point {
public:
 // Parameterized constructor
 Point(int x, int y) : xCoord(x), yCoord(y) {
 cout << "Parameterized constructor called!";
 }

private:
 int xCoord;
 int yCoord;
};

Construction and destruction of Objects

EasyExamNotes.com Construction and destruction of Objects

Destruction of Objects:

1. Destructor:

A destructor is a special member function called when an object goes out of scope or is
explicitly deleted, and it is used to release resources, perform cleanup and deallocate
memory.

C++

class MyClass {
public:
 // Constructor
 MyClass() {
 cout << "Constructor called!";
 }

 // Destructor
 ~MyClass() {
 // Cleanup code goes here
 cout << "Destructor called!";
 }
};

2. Automatic Destruction:

At the end of a function, for example when an object goes out of its scope, its destructor is
called automatically.

Construction and destruction of Objects

EasyExamNotes.com Construction and destruction of Objects

C++

void someFunction() {
 MyClass obj; // Constructor called

 // obj goes out of scope here, and its destructor is automatically
called
 // Destructor called
}

3. Manual Destruction:

The ‘delete’ keyword can be used to manually delete a dynamic object.

C++

void anotherFunction() {
 MyClass* objPtr = new MyClass(); // Constructor called

 delete objPtr; // Destructor called
}

Related posts:

Abstraction and encapsulation1.
Object Oriented Programming & Methodolog Viva Voce2.
How to install compiler for code blocks3.
Object Oriented Programming4.
Differences between Procedural and Object Oriented Programming5.
Features of Object Oriented Paradigm6.

https://easyexamnotes.com/abstraction-and-encapsulation/
https://easyexamnotes.com/object-oriented-programming-methodolog-viva-voce/
https://easyexamnotes.com/how-to-install-compiler-for-code-blocks/
https://easyexamnotes.com/object-oriented-programming/
https://easyexamnotes.com/differences-between-procedural-and-object-oriented-programming/
https://easyexamnotes.com/features-of-object-oriented-paradigm-3/

Construction and destruction of Objects

EasyExamNotes.com Construction and destruction of Objects

Inheritance in Object Oriented Programming7.
Object Oriented Programming8.
Introduction to Object Oriented Thinking & Object Oriented Programming9.
Difference Between Object-Oriented Programming (OOP) and Procedural Programming10.
features of Object oriented paradigm11.
Merits and demerits of Object Oriented methodology12.
Concept of Objects: State, Behavior & Identity of an object13.
Access modifiers14.
Static members of a Class15.
Instances in OOP16.
Message Passing in OOP17.

https://easyexamnotes.com/inheritance-in-object-oriented-programming/
https://easyexamnotes.com/oop/
https://easyexamnotes.com/introduction-to-object-oriented-thinking-object-oriented-programming/
https://easyexamnotes.com/difference-between-object-oriented-programming-oop-and-procedural-programming/
https://easyexamnotes.com/features-of-object-oriented-paradigm/
https://easyexamnotes.com/merits-and-demerits-of-object-oriented-methodology/
https://easyexamnotes.com/concept-of-objects-state-behavior-identity-of-an-object/
https://easyexamnotes.com/access-modifiers/
https://easyexamnotes.com/static-members-of-a-class/
https://easyexamnotes.com/instances-in-oop/
https://easyexamnotes.com/message-passing-in-oop/

