EasyExamNotes.com

Construction and destruction of Objects

The lifecycle of an object in object-oriented programming (OOP) involves the creation and
destruction of objects.

These areas are uniquely addressed by constructors and destructors, which are special
member functions in languages like C++ and others.

Construction of Objects:
1. Constructor:

e Any time a new object of the class is created, a constructor is automatically called.

* |t initializes the state of the object, allocates resources and carries out some setup
tasks that may be necessary.

» Constructors do not have any return type, but they bear the name of their class.

|

C++

class MyClass {
public:
// Constructor
MyClass() {
// Initialization code goes here
cout << "Constructor called!";

};

2. Default constructor:

* If you don’t write a constructor for your class, the compiler will make one for you.
e Such automatic constructor creates an object with default values or uninitialized

EasyExamNotes.com Construction and destruction of Objects



EasyExamNotes.com

Construction and destruction of Objects

members according to their types.

C++ u

class MyClass {

// No explicit constructor, so a default constructor is provided
by the compiler

};

3. Parameterized Constructor:

» Constructors can take parameters, allowing you to initialize the object with specific
values.

C++ -
class Point {
public:
// Parameterized constructor
Point(int x, int y) : xCoord(x), yCoord(y) {
cout << "Parameterized constructor called!";

}

private:
int xCoord;
int yCoord;
b

EasyExamNotes.com Construction and destruction of Objects



EasyExamNotes.com

Construction and destruction of Objects

Destruction of Objects:
1. Destructor:

A destructor is a special member function called when an object goes out of scope or is
explicitly deleted, and it is used to release resources, perform cleanup and deallocate
memory.

|

C++

class MyClass {
public:
// Constructor
MyClass() {
cout << "Constructor called!";

}

// Destructor

~MyClass() {
// Cleanup code goes here
cout << "Destructor called!";

};

2. Automatic Destruction:

At the end of a function, for example when an object goes out of its scope, its destructor is
called automatically.

EasyExamNotes.com Construction and destruction of Objects



EasyExamNotes.com

Construction and destruction of Objects

|

C++

void someFunction() {
MyClass obj; // Constructor called

// obj goes out of scope here, and its destructor is automatically
called
// Destructor called

}

3. Manual Destruction:

The ‘delete’ keyword can be used to manually delete a dynamic object.

|

C++

void anotherFunction() {
MyClass* objPtr = new MyClass(); // Constructor called

delete objPtr; // Destructor called

Related posts:

Abstraction and encapsulation

Object Oriented Programming & Methodolog Viva Voce

How to install compiler for code blocks

Object Oriented Programming

Differences between Procedural and Object Oriented Programming

S A

Features of Object Oriented Paradigm

EasyExamNotes.com Construction and destruction of Objects


https://easyexamnotes.com/abstraction-and-encapsulation/
https://easyexamnotes.com/object-oriented-programming-methodolog-viva-voce/
https://easyexamnotes.com/how-to-install-compiler-for-code-blocks/
https://easyexamnotes.com/object-oriented-programming/
https://easyexamnotes.com/differences-between-procedural-and-object-oriented-programming/
https://easyexamnotes.com/features-of-object-oriented-paradigm-3/

EasyExamNotes.com

Construction and destruction of Objects

7. Inheritance in Object Oriented Programming
8. Object Oriented Programming
9. Introduction to Object Oriented Thinking & Object Oriented Programming
10. Difference Between Object-Oriented Programming (OOP) and Procedural Programming
11. features of Object oriented paradigm
12. Merits and demerits of Object Oriented methodology
13. Concept of Objects: State, Behavior & Identity of an object
14. Access modifiers
15. Static members of a Class
16. Instances in OOP
17. Message Passing in OOP

EasyExamNotes.com Construction and destruction of Objects


https://easyexamnotes.com/inheritance-in-object-oriented-programming/
https://easyexamnotes.com/oop/
https://easyexamnotes.com/introduction-to-object-oriented-thinking-object-oriented-programming/
https://easyexamnotes.com/difference-between-object-oriented-programming-oop-and-procedural-programming/
https://easyexamnotes.com/features-of-object-oriented-paradigm/
https://easyexamnotes.com/merits-and-demerits-of-object-oriented-methodology/
https://easyexamnotes.com/concept-of-objects-state-behavior-identity-of-an-object/
https://easyexamnotes.com/access-modifiers/
https://easyexamnotes.com/static-members-of-a-class/
https://easyexamnotes.com/instances-in-oop/
https://easyexamnotes.com/message-passing-in-oop/

