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Construction and destruction of Objects

The lifecycle of an object in object-oriented programming (OOP) involves the creation and
destruction of objects.

These areas are uniquely addressed by constructors and destructors, which are special
member functions in languages like C++ and others.

Construction of Objects:
1. Constructor:

e Any time a new object of the class is created, a constructor is automatically called.

* |t initializes the state of the object, allocates resources and carries out some setup
tasks that may be necessary.

» Constructors do not have any return type, but they bear the name of their class.

|

C++

class MyClass {
public:
// Constructor
MyClass() {
// Initialization code goes here
cout << "Constructor called!";

};

2. Default constructor:

* If you don’t write a constructor for your class, the compiler will make one for you.
e Such automatic constructor creates an object with default values or uninitialized
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members according to their types.

C++ u

class MyClass {

// No explicit constructor, so a default constructor is provided
by the compiler

};

3. Parameterized Constructor:

» Constructors can take parameters, allowing you to initialize the object with specific
values.

C++ -
class Point {
public:
// Parameterized constructor
Point(int x, int y) : xCoord(x), yCoord(y) {
cout << "Parameterized constructor called!";

}

private:
int xCoord;
int yCoord;
b
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Destruction of Objects:
1. Destructor:

A destructor is a special member function called when an object goes out of scope or is
explicitly deleted, and it is used to release resources, perform cleanup and deallocate
memory.

|

C++

class MyClass {
public:
// Constructor
MyClass() {
cout << "Constructor called!";

}

// Destructor

~MyClass() {
// Cleanup code goes here
cout << "Destructor called!";

};

2. Automatic Destruction:

At the end of a function, for example when an object goes out of its scope, its destructor is
called automatically.

EasyExamNotes.com Construction and destruction of Objects



EasyExamNotes.com

Construction and destruction of Objects

|

C++

void someFunction() {
MyClass obj; // Constructor called

// obj goes out of scope here, and its destructor is automatically
called
// Destructor called

}

3. Manual Destruction:

The ‘delete’ keyword can be used to manually delete a dynamic object.

|

C++

void anotherFunction() {
MyClass* objPtr = new MyClass(); // Constructor called

delete objPtr; // Destructor called
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