#1. What is Data Science?
1. The study of computer algorithms
2. The process of extracting insights from complex and unstructured data
3. The analysis of data using statistical methods
4. The study of computer networks
5. None of the above
#2. Which programming languages are commonly used in Data Science?
1. Java, C++, Python
2. R, Python, SQL
3. HTML, CSS, JavaScript
4. Ruby, Swift, Kotlin
5. None of the above
#3. What is the purpose of exploratory data analysis (EDA) in Data Science?
1. To predict future trends
2. To summarize data and gain insights

3. To develop machine learning models
4. To create data visualizations
5. None of the above
#4. What is the main goal of data preprocessing in the context of machine learning?
1. To make the data easier to understand and interpret
2. To remove all the data entries with missing values
3. To increase the complexity of the data
4. To reduce the size of the dataset by removing columns and rows
5. None of the above
#5. Which of the following is used for feature selection in machine learning?
1. Principal Component Analysis (PCA)
2. Linear Regression
3. Random Forest
4. K-Nearest Neighbors
5. None of the above

#6. What does the term "overfitting" mean in the context of machine learning?
1. The model fits the training data too well but performs poorly on new data
2. The model has too few features and lacks complexity
3. The model is trained on a very small dataset
4. The model is not fitting the training data well enough
5. None of the above
#7. What is a confusion matrix used for in the evaluation of classification models?
1. To visualize the relationship between variables
2. To summarize the performance of a classification algorithm
3. To calculate correlation coefficients
4. To identify outliers in the data
5. None of the above
#8. What is the purpose of cross-validation in machine learning?
1. To split the dataset into training and testing sets
2. To evaluate a model's performance on an independent dataset
3. To visualize the data using cross-shaped plots

4. To transform categorical variables into numerical values
5. None of the above
#9. Which algorithm is commonly used for both classification and regression tasks
in machine learning?
1. Support Vector Machine (SVM)
2. K-Means Clustering
3. Decision Tree
4. Neural Network
5. None of the above
#10. What is the primary purpose of regularization techniques in machine learning?
1. To add more features to the model
2. To reduce the complexity of the model
3. To increase the accuracy of the model
4. To increase the training time of the model
5. None of the above
#11. What is the difference between supervised and unsupervised learning in

machine learning?
1. In supervised learning, the model is trained with labeled data; in unsupervised learning,
the model is trained with unlabeled data
2. Supervised learning requires a human supervisor; unsupervised learning does not $\hfill\square$
3. Supervised learning is used for regression tasks; unsupervised learning is used for
classification tasks
4. In unsupervised learning, the model predicts outcomes; in supervised learning, the mode
does not predict outcomes
5. None of the above
#12. What does the term "feature engineering" refer to in the context of machine learning?
1. Creating new features from existing data
2. Transforming features into labels
3. Removing features with missing values
4. Engineering physical devices based on machine learning algorithms $\hfill\Box$
5. None of the above
#13. What is the main goal of clustering algorithms in unsupervised learning?
1. To predict an output value based on input features

2. To group similar data points together
3. To classify data points into predefined classes
4. To draw decision boundaries between classes
5. None of the above
#14. What is the purpose of dimensionality reduction techniques like PCA (Principal Component Analysis) in machine learning?
1. To increase the number of features in the dataset
2. To reduce the number of features while retaining essential information
3. To add noise to the data and increase variability
4. To remove outliers from the dataset
E. None of the above
5. None of the above
#15. In data preprocessing, what is imputation used for?
1. To increase the number of features in the dataset
2. To remove outliers from the dataset
3. To fill missing values in the dataset using various techniques
4. To transform categorical data into numerical values
5. None of the above
J. Notic of the above

#16. What is the primary purpose of the term frequency-inverse document frequency (TF-IDF) in text mining and natural language processing?
 1. To calculate the frequency of words in a document 2. To measure the importance of words in a document based on their frequency and rarity in
the entire corpus
3. To summarize the content of a document $\hfill\Box$
4. To translate text from one language to another $\hfill\Box$
5. None of the above
#17. What does the term "precision" represent in the context of classification models?
1. The ability of the model to find all the relevant cases
2. The ability of the model to correctly identify positive cases
3. The ability of the model to avoid classifying negative cases as positive \Box
4. The ability of the model to generalize well to new, unseen data $\hfill\Box$
5. None of the above
#18. Which algorithm is commonly used for anomaly detection in data science?
□1. K-Means Clustering

2. Decision Tree
3. Isolation Forest
4. Support Vector Machine (SVM)
5. None of the above
#19. What is the purpose of ensemble methods in machine learning?
1. To increase the accuracy of the model
2. To decrease the complexity of the model
3. To decrease the training time of the model
4. To increase the number of features in the dataset
5. None of the above
#20. Which metric is commonly used for evaluating regression models in data
science?
1. Accuracy
2. F1-Score
3. Mean Squared Error (MSE)
4. Precision-Recall Curve
5. None of the above

Next

Results

