
Dead code elimination

EasyExamNotes.com Dead code elimination

Dead code elimination is an optimization technique used in compiler design to remove
portions of code that do not contribute to the final output of a program.

Dead code refers to sections of code that are never executed during the program’s runtime,
either because they are unreachable or their results are never used.

Dead code elimination helps improve the efficiency and performance of the compiled
program by reducing unnecessary computations and reducing code size.

For example,

z = x*y;
a = x; // dead code
w = x*y+6;

After dead code elimination above program become,

z = x*y;
w = x*y+6;

Overview of dead code elimination:

Definition: Dead code elimination is the process of identifying and removing code that1.
has no impact on the program’s final output or result.
Unreachable Code: Dead code can occur when there are portions of code that are2.
impossible to execute based on program logic or control flow. For example, code

Dead code elimination

EasyExamNotes.com Dead code elimination

following a return statement, code inside an if statement that is never true, or code
after an unconditional branch.
Unused Results: Dead code can also include computations or assignments that are3.
never used or accessed later in the program. For example, assigning a value to a
variable that is never read or performing a calculation that is never utilized.
Static Analysis: Dead code elimination is typically performed using static analysis4.
techniques during the compilation process. The compiler analyzes the control flow and
data flow of the program to identify code that is dead or unreachable.
Marking and Removal: During the analysis, the compiler marks the sections of code5.
that are determined to be dead. In subsequent stages, the marked code is removed
from the final generated code or optimized out.
Benefits: Dead code elimination offers several benefits, including:6.

Improved performance: Removing dead code reduces unnecessary
computations, leading to faster execution times.
Reduced code size: Eliminating dead code reduces the size of the compiled
program, resulting in smaller executables and reduced memory usage.
Simplified maintenance: Removing dead code improves code readability and
maintainability by eliminating irrelevant or confusing sections.

Limitations: Dead code elimination has certain limitations and challenges. It relies on7.
accurate and precise analysis, which can be complex for programs with dynamic
control flow or indirect function calls. Additionally, code that appears to be dead during
static analysis might be conditionally executed in specific runtime scenarios, making it
challenging to determine its actual reachability.

