RGPV 2020 CPU Scheduling Algorithm

Consider the following set of processes.

Process	Burst Time	Arrival Time
P1	3	0
P2	5	1
P3	2	2
P4	5	3
P5	5	4

Develop a Gantt-chart and calculate the average waiting time using:

i) FCFS

ii) SJF

iii) Round Robin (q = 1)

Solution:

i) FCFS

Santt Chart for FCFS

From above Gantt Chart waiting time for each process:

Waiting time = Turnaround time - Burst time

Process	Waiting time
P1	3-3=0
P2	7-5=2
P3	8-2=6
P4	12-5=7

10-5-11

Average waiting time = Sum of waiting time / Number of processes

Average waiting time = (0+2+6+7+11)/5 = 5.2

ii) SJF

≍ Gantt Chart SJF

From above Gantt Chart waiting time for each process:

Waiting time = Turnaround time - Burst time

9Wationciena.99time 19843 = 19925 = 4

Gantt Chart RR

From above Gantt Chart waiting time for each process:

Waiting time = Turnaround time - Burst time

Develop a Gantt Chart, Average Waiting time, FCFS, SJF, RR

```
P
6
5
1
1
Average waiting time = Sum of waiting time / Number of processes
Average waiting time = (8+12+4+11+11)/5 = 9.2
Related posts:
```

- 1. GATE CS 2020 CPU Scheduling PYQ
- 2. GATE CPU scheduling PYQ
- 3. GATE 1996 CPU Scheduling algo completion time RR
- 4. GATE 2006 CPU scheduling PYQ
- 5. GATE 2005 CPU scheduling PYQ
- 6. GATE 2004 CPU scheduling PYQ
- 7. GATE CPU scheduling PYQ