Aspect	Supervised Learning	Unsupervised Learning	Reinforcement Learning
Learning Paradigm	Labeled data with input-output pairs	Unlabeled data with no explicit target labels	Feedback-based learning through interactions
Input Data	Input features (X) and corresponding target labels (Y)	Input features (X) without corresponding target labels	Input features (X) and environment feedback (rewards and penalties)
Goal	Make predictions or decisions on new data	Discover patterns and relationships in data	Learn a policy to make optimal decisions
Example Applications	Image classification, sentiment analysis, regression tasks, etc.	Clustering, anomaly detection, dimensionality reduction, recommendation systems,	Game playing (e.g., AlphaGo), robotic control, self-driving cars, etc.
Training Approach	Supervised learning algorithms optimize a mapping between X and Y using labeled data	Unsupervised learning algorithms seek to find patterns or structure in the data without labels	Model learns through trial and error with exploration and
Knowledge Required	Requires labeled data for training	Does not require labelled data	Requires understanding of the environment and its feedback
Evaluation	Performance measured based on prediction accuracy or other classification metrics	Evaluation is more challenging and may be based on metrics like clustering quality	Evaluation is based on long-term cumulative rewards and penalties

Aspect	Supervised Learning	Unsupervised Learning	Reinforcement Learning
Exploration vs Exploitation	Not applicable	Not applicable	Balancing exploration and exploitation
Common Algorithms	Linear regression, logistic regression, support vector machines, decision trees, etc.	K-Means clustering, Gaussian Mixture Models, autoencoders, etc.	Q-learning, Deep Q Network (DQN), Policy Gradient methods,Actor- Critic, etc.

Related posts:

- 1. What is Machine Learning ?
- 2. Types of Machine Learning ?
- 3. Applications of Machine Learning
- 4. Data Preprocessing
- 5. Data Cleaning
- 6. Handling Missing Data
- 7. Feature Scaling
- 8. Labeled data in Machine learning
- 9. Machine learning algorithms for Big data
- 10. Difference between Supervised vs Unsupervised vs Reinforcement learning
- 11. What is training data in Machine learning
- 12. What is Ordinary Least Squares (OLS) estimation
- 13. Scalar in Machine Learning
- 14. Scalars in Loss Functions | Machine Learning
- 15. Linear Algebra for Machine Learning Practitioners

Difference between Supervised vs Unsupervised vs Reinforcement learning

- 16. Supervised Learning
- 17. Top Interview Questions and Answers for Supervised Learning
- 18. Define machine learning and explain its importance in real-world applications.
- 19. Differences Between Machine Learning and Artificial Intelligence
- 20. Machine Learning works on which type of data ?
- 21. What is target variable and independent variable in machine learning
- 22. Machine Learning Scope and Limitations
- 23. What is Regression in Machine learning
- 24. Statistics and linear algebra for machine learning
- 25. Finding Machine Learning Datasets
- 26. What is hypothesis function and testing
- 27. Explain computer vision with an appropriate example
- 28. Explain Reinformcement learning with an appropriate exaple
- 29. Reinforcement Learning Framework
- 30. Data augmentation
- 31. Normalizing Data Sets in Machine Learning
- 32. Machine learning models
- 33. Unsupervised machine learning
- 34. Neural Network in Machine Learning
- 35. Recurrent neural network
- 36. Support Vector Machines
- 37. Long short-term memory (LSTM) networks
- 38. Convolutional neural network
- 39. How to implement Convolutional neural network in Python
- 40. What is MNIST ?
- 41. What does it mean to train a model on a dataset ?
- 42. Can a textual dataset be used with an openCV?

- 43. Name some popular machine learning libraries.
- 44. Introduction to Machine Learning
- 45. Some real time examples of machine learning
- 46. Like machine learning, what are other approaches in AI ?
- 47. Statistics and Linear Algebra for Machine Learning ?
- 48. What is convex optimization in simple terms ?
- 49. What is data visualization in simple terms ?
- 50. What is data preprocessing in machine learning ?
- 51. What are data distributions, and why are they important?
- 52. What is data augmentation in machine learning ?
- 53. What is labelled and unlabelled data set in Machine Learning ?
- 54. What is neural networks in Machine Learning?
- 55. How are convolutional neural networks related to supervised learning ?
- 56. Fundamentals of Neural Networks
- 57. Linearity vs non-linearity in Machine Learning ?
- 58. Machine Learning Short Exam Notes
- 59. Machine Learning Short Exam Notes Quick and Easy Revision Guide