- 1. What is a discrete-time signal?
- a) A signal that varies continuously over time
- b) A signal that is continuous and non-linear
- c) A signal that is sampled at discrete points in time
- d) A signal that is continuous but time-invariant

Answer: c) A signal that is sampled at discrete points in time

Explanation: Discrete-time signals are sequences of values that are defined at discrete instants of time, typically obtained by sampling a continuous-time signal.

- 2. Which of the following best describes a discrete-time linear time-invariant (LTI) system?
- a) A system whose input and output signals are both continuous
- b) A system whose impulse response changes over time
- c) A system that satisfies the properties of linearity and time-invariance
- d) A system that is non-linear and time-varying

Answer: c) A system that satisfies the properties of linearity and time-invariance

Explanation: Discrete-time LTI systems exhibit properties of linearity and time-invariance, meaning their responses to inputs are consistent and additive, and their behavior does not change over time.

- 3. How are discrete-time systems commonly described mathematically?
- a) By differential equations

- b) By integral equations
- c) By difference equations
- d) By partial differential equations

Answer: c) By difference equations

Explanation: Difference equations describe the behavior of discrete-time systems by relating the current and past values of the input and output signals.

- 4. What is the solution of a difference equation?
- a) A continuous function
- b) A set of differential equations
- c) A sequence of values that satisfies the equation
- d) A non-linear relationship

Answer: c) A sequence of values that satisfies the equation

Explanation: The solution of a difference equation provides a sequence of values that, when substituted into the equation, satisfy it.

- 5. In the context of discrete-time systems, what does stability refer to?
- a) The ability of a system to maintain its performance over time
- b) The tendency of a system to oscillate
- c) The boundedness of the system's response to bounded inputs
- d) The linearity of the system

Discrete-Time Signals and Systems MCqs

Answer: c) The boundedness of the system's response to bounded inputs

Explanation: Stability in discrete-time systems implies that the system's response remains bounded when subjected to bounded inputs.

6. Which domain is commonly used to analyze discrete-time signals and systems?

- a) Time domain
- b) Frequency domain
- c) Spatial domain
- d) Temporal domain

Answer: b) Frequency domain

Explanation: Frequency domain analysis involves representing signals and systems in terms of their frequency components, which is commonly used for analyzing discrete-time signals and systems.

- 7. What property must a system exhibit to be causal?
- a) Its output depends only on future input values
- b) Its output depends only on past and present input values
- c) Its output depends only on past input values
- d) Its output depends only on present input values

Answer: c) Its output depends only on past input values

Explanation: Causality in systems implies that the current output depends only on past input

values and not on future inputs.

- 8. Which of the following statements is true regarding the implementation of discrete-time systems?
- a) They can only be implemented using analog circuits
- b) They can be implemented using both analog and digital circuits
- c) They can only be implemented using digital circuits
- d) They cannot be implemented practically

Answer: b) They can be implemented using both analog and digital circuits

Explanation: Discrete-time systems can be implemented using both analog and digital circuits depending on the application and requirements.

- 9. What characteristic distinguishes a linear system from a non-linear system?
- a) The linearity of its input-output relationship
- b) The complexity of its equations
- c) The presence of feedback
- d) The system's stability

Answer: a) The linearity of its input-output relationship

Explanation: Linear systems exhibit a linear relationship between their inputs and outputs, meaning their responses are proportional to the inputs.

10. How are discrete-time signals different from continuous-time signals?

- a) Discrete-time signals are continuous in nature
- b) Continuous-time signals are only defined at discrete points
- c) Discrete-time signals are sampled at discrete points
- d) Continuous-time signals are discrete in nature

Answer: c) Discrete-time signals are sampled at discrete points

Explanation: Discrete-time signals are obtained by sampling continuous-time signals at discrete points in time, unlike continuous-time signals which are continuous functions of time.