- 1. What is the relationship between the displacement, velocity, and acceleration of a piston in an engine?
- a) Displacement and velocity are inversely proportional, while acceleration is constant.
- b) Displacement and acceleration are directly proportional, while velocity remains constant.
- c) Displacement is the integral of velocity, and velocity is the integral of acceleration.
- d) Acceleration is the derivative of velocity, and velocity is the derivative of displacement.

Answer: d) Acceleration is the derivative of velocity, and velocity is the derivative of displacement.

Explanation: In engine mechanisms, displacement is the distance traveled by the piston, velocity is the rate of change of displacement, and acceleration is the rate of change of velocity.

- 2. What does the turning moment on a crankshaft represent?
- a) The force exerted by the piston on the crankshaft.
- b) The rotational speed of the crankshaft.
- c) The torque applied to the crankshaft.
- d) The linear motion of the piston.

Answer: c) The torque applied to the crankshaft.

Explanation: The turning moment on a crankshaft represents the torque applied to it, usually by the combustion of fuel in the engine cylinders.

- 3. What is the purpose of a turning moment diagram in engine analysis?
- a) To measure the linear displacement of the piston.
- b) To visualize the variation of torque on the crankshaft throughout a cycle.
- c) To calculate the maximum velocity of the piston.

d) To determine the efficiency of the engine.

Answer: b) To visualize the variation of torque on the crankshaft throughout a cycle. Explanation: A turning moment diagram helps engineers understand how torque varies on the crankshaft during each cycle, aiding in engine performance analysis and optimization.

- 4. What causes fluctuations in crankshaft speed in an engine?
- a) Variations in fuel quality.
- b) Uneven combustion in the cylinders.
- c) Changes in oil viscosity.
- d) Wear and tear of engine components.

Answer: b) Uneven combustion in the cylinders.

Explanation: Fluctuations in crankshaft speed often result from uneven combustion in the engine cylinders, leading to irregular torque generation.

- 5. How does a flywheel contribute to engine stability?
- a) By increasing engine speed.
- b) By storing and releasing energy to even out fluctuations in crankshaft speed.
- c) By reducing engine power.
- d) By increasing fuel consumption.

Answer: b) By storing and releasing energy to even out fluctuations in crankshaft speed. Explanation: A flywheel acts as a mechanical battery, storing kinetic energy during power strokes and releasing it during non-power strokes, thus stabilizing crankshaft speed.

- 6. What type of motion does the fluctuation of crankshaft speed represent?
- a) Linear motion.

- b) Circular motion.
- c) Oscillatory motion.
- d) Translational motion.

Answer: c) Oscillatory motion.

Explanation: Fluctuations in crankshaft speed represent an oscillatory motion, where the speed varies periodically around a mean value.

- 7. How does the displacement of a piston relate to the volume within the engine cylinder?
- a) Displacement is directly proportional to the cylinder volume.
- b) Displacement is inversely proportional to the cylinder volume.
- c) Displacement is unrelated to the cylinder volume.
- d) Displacement is proportional to the square of the cylinder volume.

Answer: a) Displacement is directly proportional to the cylinder volume.

Explanation: The displacement of a piston is directly proportional to the volume of the engine cylinder it moves within.

- 8. What effect does increased turning moment have on engine performance?
- a) Decreased torque.
- b) Increased acceleration.
- c) Improved fuel efficiency.
- d) Enhanced power output.

Answer: d) Enhanced power output.

Explanation: Increased turning moment or torque on the crankshaft leads to enhanced power output, allowing the engine to perform better.

- 9. How does the shape of a turning moment diagram vary in a well-tuned engine compared to a poorly tuned one?
- a) It remains constant.
- b) It becomes smoother in a well-tuned engine.
- c) It becomes jagged in a well-tuned engine.
- d) It becomes inverted in a well-tuned engine.

Answer: b) It becomes smoother in a well-tuned engine.

Explanation: In a well-tuned engine, the turning moment diagram typically exhibits smoother variations, indicating more consistent torque delivery.

- 10. What role does the turning moment play in determining engine output?
- a) It regulates fuel intake.
- b) It controls exhaust emissions.
- c) It influences the engine's ability to do work.
- d) It affects the cooling system.

Answer: c) It influences the engine's ability to do work.

Explanation: The turning moment, or torque, directly affects the engine's ability to produce power and perform work, making it a critical factor in determining engine output.

Related posts:

- 1. Steam generators and boilers MCQs
- 2. Vapour Cycles MCQs
- 3. Gas Dynamics MCQs
- 4. Air Compressors MCQs
- 5. Nozzles and Condensers MCQs

- 6. Introduction to stress in machine component MCQs
- 7. Shafts MCQS
- 8. Springs MCQs
- 9. Brakes & Clutches MCQs
- 10. Journal Bearing MCQs
- 11. Energy transfer in turbo machines MCQs
- 12. Steam turbines MCQs
- 13. Water turbines MCQs
- 14. Rotary Fans, Blowers and Compressors MCQs
- 15. Power transmitting turbo machines MCQs
- 16. Energy transfer in turbo machines MCQs
- 17. Steam turbines MCQs
- 18. Water turbines MCQS
- 19. Rotary Fans, Blowers and Compressors MCQs
- 20. Power transmitting turbo machines MCQs
- 21. Introduction to Computer Engineering MCQs
- 22. Types of Analysis MCQS
- 23. Heat Transfer and Conduction MCQs
- 24. Extended Surfaces (fins) MCQs
- 25. Convection MCOs
- 26. Thermal and Mass Transfer MCQs
- 27. Thermal Radiation & Boiling/Condensation MCQs
- 28. Mechanical processes MCQs
- 29. Electrochemical and chemical metal removal processes MCQs
- 30. Thermal metal removal processes MCQs
- 31. Rapid prototyping fabrication methods MCQs
- 32. Technologies of micro fabrication MCQs

- 33. Power Plant Engineering MCQs
- 34. Fossil fuel steam stations MCQs
- 35. Nuclear Power Station MCQs
- 36. Hydro-Power Station MCQs
- 37. Power Station Economics MCQs
- 38. Design of Belt, Rope and Chain Drives MCQS
- 39. Spur and Helical Gears MCQs
- 40. Bevel Gears MCQs
- 41. Design of I.C. Engine Components MCQs
- 42. Linear system and distribution models MCQs
- 43. Supply chain (SCM) MCQs
- 44. Inventory models MCQs
- 45. Queueing Theory & Game Theory MCQs
- 46. Project Management & Meta-heuristics MCQs
- 47. Overview of Systems Engineering MCQS
- 48. Structure of Complex Systems MCQs
- 49. Concept Development and Exploration MCQs
- 50. Engineering Development MCQs
- 51. Basic Concepts & Laws of Thermodynamics MCQs
- 52. Properties of Steam MCQs
- 53. Air standard cycles MCQS
- 54. Fuels & combustion MCQs
- 55. Materials Science MCQs
- 56. Alloys and Materials MCQs
- 57. Metal Heat Treatment MCOs
- 58. Material Testing and Properties MCQs
- 59. Chemical Analysis of Metal Alloys MCQs

- 60. Stress and strain MCQs
- 61. Bending MCQs
- 62. Torsion in shafts MCQs
- 63. Theories of failures MCQs
- 64. Columns & struts MCQs
- 65. Manufacturing Process MCQs