- 1. Which algorithm efficiently computes the Discrete Fourier Transform (DFT) for a sequence of length (N)?
- a) FFT algorithm
- b) DWT algorithm
- c) IDFT algorithm
- d) DCT algorithm

Answer: a) FFT algorithm

Explanation: The Fast Fourier Transform (FFT) algorithm is specifically designed to efficiently compute the DFT for a sequence of length (N) by reducing the computational complexity from ($O(N^2)$) to ($O(N \log N)$).

- 2. What is the primary technique used in the FFT algorithm to reduce computational complexity?
- a) Decimation in Time
- b) Decimation in Frequency
- c) Convolution
- d) Interpolation

Answer: a) Decimation in Time

Explanation: The FFT algorithm primarily utilizes the technique of decimation in time to divide

the computation into smaller DFTs, reducing the overall computational complexity.

- 3. In the context of the FFT algorithm, what does 'decimation' refer to?
- a) Sampling
- b) Downsizing
- c) Filtering
- d) Quantization

Answer: b) Downsizing

Explanation: Decimation in the FFT algorithm involves downsizing the computation by dividing the input sequence into smaller subsequences, reducing the computational complexity.

- 4. Which FFT algorithm variant is most suitable for sequences whose length is a power of 2?
- a) Radix-2 FFT
- b) Radix-4 FFT
- c) Cooley-Tukey FFT
- d) Bluestein FFT

Answer: a) Radix-2 FFT

Explanation: Radix-2 FFT is specifically optimized for sequences whose length is a power of 2, providing efficient computation in ($O(N \log N)$) time complexity.

- 5. Which of the following is NOT a step in the decimation in time FFT algorithm?
- a) Divide
- b) Conquer
- c) Combine
- d) Multiply

Answer: b) Conquer

Explanation: The decimation in time FFT algorithm involves the steps of dividing, multiplying, and combining smaller DFTs to compute the overall DFT efficiently.

- 6. Which FFT algorithm variant is particularly advantageous for sequences with prime factors other than 2?
- a) Bluestein FFT
- b) Radix-2 FFT

c) Cooley-Tukey FFT
d) Radix-4 FFT
Answer: a) Bluestein FFT
Explanation: Bluestein FFT is beneficial for sequences with prime factors other than 2, as it handles composite lengths efficiently by transforming them into lengths that are powers of 2.
7. What is the primary technique used in the decimation in frequency FFT algorithm?
a) Time-reversal
b) Frequency-domain filtering
c) Convolution
d) Amplitude modulation
Answer: b) Frequency-domain filtering
Explanation: Decimation in frequency FFT algorithm primarily involves filtering the frequency domain representation of the input sequence to reduce computational complexity.
8. Which FFT algorithm variant is based on the divide-and-conquer strategy?

- a) Cooley-Tukey FFT
- b) Radix-2 FFT
- c) Bluestein FFT
- d) Mixed-radix FFT

Answer: a) Cooley-Tukey FFT

Explanation: Cooley-Tukey FFT algorithm employs the divide-and-conquer strategy to break down the DFT computation into smaller DFTs, which are then combined to obtain the final result efficiently.

- 9. What is the primary advantage of the decimation in frequency FFT algorithm over decimation in time FFT algorithm?
- a) Better numerical stability
- b) Lower memory requirement
- c) Reduced arithmetic complexity
- d) Higher precision

Answer: b) Lower memory requirement

Explanation: Decimation in frequency FFT algorithm typically requires lower memory usage compared to decimation in time FFT algorithm, making it advantageous in memory-constrained environments.

- 10. Which FFT algorithm variant is particularly useful for sequences with mixed prime factors?
- a) Mixed-radix FFT
- b) Radix-2 FFT
- c) Cooley-Tukey FFT
- d) Bluestein FFT

Answer: a) Mixed-radix FFT

Explanation: Mixed-radix FFT algorithm is beneficial for sequences with mixed prime factors, as it can efficiently handle composite lengths by employing different radix sizes for factorization.

Related posts:

- 1. Discrete-Time Signals and Systems MCqs
- 2. The z-Transformmcqs
- 3. Frequency Analysis of Discrete Time Signals mcqs
- 4. Digital filters Design Techniques Mcqs
- 5. Web Development Essentials MCQs
- 6. HTML MCQs
- 7. Style sheets MCQs
- 8. XML MCQs
- 9. PHP and MySQL MCQs

- 10. Basics of programming MCQs
- 11. Decision control structure MCQs
- 12. Array MCQS
- 13. C Programming Essentials Structures, Preprocessor, and Unions MCQs
- 14. Basic concepts of OOP MCQS
- 15. Unix/Linux MCQs
- 16. The Shell Basic Commands, Shell Programming MCQs
- 17. File System MCQs
- 18. Process Control MCQS
- 19. System Security MCQs.
- 20. Dynamic Host Configuration Protocol MCQs
- 21. Introduction to Energy Science MCQs
- 22. Ecosystems mcqs
- 23. Biodiversity and its conservation MCQs
- 24. Environmental Pollution mcgs
- 25. Social Issues and the Environment mcgs
- 26. Signals and Systems MCQs
- 27. Linear Time- Invariant Systems mcgs
- 28. z-Transform mcqs
- 29. Fourier analysis of discrete time signals mcqs
- 30. State-Space Analysis, Sampling Theorem, and Signal Reconstruction mcqs
- 31. Frequency domain representation of signal mcqs
- 32. Modulation Techniques mcgs
- 33. FM Modulation & Transmission MCQs
- 34. Understanding AM and FM Transmission Noise and Receiver Characteristics
- 35. Control System MCQs: Basics, Feedback, and Analysis
- 36. Control System Analysis MCQs

- 37. Frequency Domain Analysis MCQs
- 38. System Design and Compensation Techniques MCQs
- 39. State Space & Control Systems MCQs
- 40. Feedback Amplifiers and Oscillators MCQs
- 41. Introduction to ICs and Op-Amps MCQs
- 42. Op-Amp Characteristics MCQs
- 43. OP-AMP applications MCQs
- 44. Electronic Circuits with 555 Timer MCQs
- 45. Voltage Regulator MCQs
- 46. Radiation mcqs
- 47. Antenna Fundamentals mcqs
- 48. Types of antennas mcqs
- 49. Aperture and slot mcqs
- 50. Propagation of radio waves mcqs
- 51. Data Communication mcgs
- 52. OSI model mcgs
- 53. ERROR CONTROL AND DATA LINK PROTOCOLS mcgs
- 54. NETWORKS mcqs
- 55. NETWORKING DEVICES AND TCP / IP PROTOCOL SUITE mcqs
- 56. CMOS VLSI Circuit Design MCQs
- 57. Specification of sequential systems mcqs
- 58. Satellite Systems and Orbital Mechanics MCQs
- 59. Satellite Communication & Polarization MCQs
- 60. Satellite and Earth Segment MCQs
- 61. Satellite Communication MCOs
- 62. Satellite Services MCQs
- 63. 8051 Interfacing & Serial Communication MCQs

- 64. MCU Overview 8096 and PIC mcqs
- 65. Introduction to Embedded Systems mcqs
- 66. Embedded System Architecture mcgs
- 67. Input Output and Peripheral Devices mcgs
- 68. PHYSIOLOGY AND TRANSDUCERS mcqs
- 69. ELECTRO PHYSIOLOGICAL MEASUREMENTS mcgs
- 70. NON-ELECTRICAL PARAMETER MEASUREMENTS mcgs
- 71. MEDICAL IMAGING MCQS
- 72. ASSISTING AND THERAPEUTIC EQUIPMENTS MCQS
- 73. Power Semiconductor Switches MCQS
- 74. Rectifiers and Thyristors MCQs
- 75. Inverters & Cycloconverters Inverters MCQs
- 76. AC Voltage Controllers MCQs
- 77. DC DC Converters MCQS
- 78. Practical Consideration and Technology in VLSI Design MCQs
- 79. Device Modeling MCQs
- 80. Circuit Simulation MCQs
- 81. Structured Digital Circuits and Systems MCQs
- 82. CMOS Processing Technology MCQs
- 83. Microwave Engineering MCQs
- 84. Microwave Semiconductor Devices MCQs
- 85. RF Network Analysis & Measurement MCQs
- 86. Microwave Components and Circuits MCQs
- 87. RF & Microwave Circuit Design MCQs
- 88. Information Theory MCQs
- 89. Coding theorem MCQs
- 90. Information Channels MCQs

- 91. Error Control Coding MCQs
- 92. BCH and Convolutional Codes MCQs
- 93. Nanoscale Semiconductor Physics MCQs
- 94. Introduction to lithography MCQs
- 95. Tunnel Junctions and Tunneling Phenomena MCQs
- 96. Nanoelectronics MCQs
- 97. Scaling of physical systems MCQs
- 98. Cellular Mobile Systems MCQs
- 99. Wireless Communication Essentials MCQs
- 100. Cochannel interference reduction MCQs
- 101. Types of Noncochannel interference MCQS
- 102. Cellular Network Management MCQs
- 103. Digital Cellular Systems MCQs
- 104. IoT Essentials MCQs
- 105. IoT Technologies MCQs
- 106. Design Principles for Web Connectivity MCQs
- 107. IoT Technologies MCQS
- 108. IOT Design methodology MCQs
- 109. Probability and Random Variable MCQs
- 110. Probability Distributions and Expectations MCQs
- 111. Multiple Random Variables MCQS
- 112. Stochastic Processes MCQs
- 113. Optical Fiber Basics MCQs
- 114. Signal degradation in Optical Fibre MCQs
- 115. Optical sources and detectors MCQs
- 116. Optical Communication MCQs
- 117. Optical networks and amplifiers MCQS

- 118. 5G Wireless Communications MCQ
- 119. 5G Wireless Propagation Channels MCQS
- 120. 5G Transmission and Design Techniques MCQS
- 121. D2D and M2M Communications MCOS
- 122. Millimeter-Wave Communications MCQs
- 123. Review of Cellular Networks MCQS
- 124. LTE systems MCQS
- 125. Wireless Sensor Networks MCQS
- 126. Wireless routing Protocols MCQS
- 127. Internet of things (IoT) and GPS systems MCQS
- 128. Digital Image Processing MCQs
- 129. Transforms and Their Properties MCQs
- 130. Image Enhancement Techniques MCQs
- 131. Image Restoration MCQs
- 132. Compression & Image Watermarking MCQs
- 133. Speech Processing Fundamentals MCQs
- 134. Speech Distortion Analysis MCQs
- 135. HMMs in Speech Modeling MCQs
- 136. Large Vocabulary Continuous Speech RecognitioN MCQS
- 137. Text-to-Speech Synthesis MCQS
- 138. Theory of Measurement MCQs
- 139. Cathode Ray Tubes, Oscilloscopes, and Bridge Circuits MCQs
- 140. Transducer MCQs
- 141. Signal and Function Generators, Displays MCQS
- 142. Digital and Analog Conversion MCQs
- 143. Number Systems MCQS
- 144. Combinational logic circuits MCQS

- 145. Sequential Logic Design MCQs
- 146. Registers and Counters MCQS
- 147. Logic Families and Semiconductor Memories MCQS
- 148. Semiconductor MCQs
- 149. Diode Circuits & Power Supply MCQs
- 150. Fundamentals of BJT MCQS
- 151. Small Signal analysis MCQs
- 152. Electronic Devices MCQs
- 153. Introduction to circuit theory MCQS
- 154. Network Graph theory MCQs
- 155. Network Theorems MCQS
- 156. Electrical Circuit Analysis and Laplace Transform MCQs
- 157. Two port parameters MCQS
- 158. Evolution of Microprocessors: From 8086 to Pentium MCQs
- 159. 8086 Microprocessor MCQs
- 160. Interfacing Chips in Microprocessor Systems MCQS
- 161. Peripheral Devices in Computer Systems MCQS
- 162. 8051 Microcontrollers & Embedded Systems MCQs
- 163. Sampling, Modulation, and Multiplexing MCQs
- 164. Digital Communication Techniques MCQs
- 165. Digital Modulation Techniques MCQs
- 166. Modulation Techniques and Signal Processing MCQs
- 167. Information Theory and Communication MCqs
- 168. Two-Port Networks and Matching Techniques MCQs
- 169. Passive LC Filters MCQs
- 170. Transmission Line Fundamentals MCOs
- 171. RF Transmission Lines and Matching Techniques: MCQs

- 172. Top MCQs for Practice: Sharpen Your Knowledge and Test-Taking Skills
- 173. Cyber Security MCQs
- 174. Image Processing MCQ
- 175. Software engineering MCQ
- 176. Set Theory, Relation, and Function MCQ
- 177. Sorting MCQ
- 178. MCQ
- 179. Study of Greedy strategy MCQ
- 180. Computer Architecture, Design, and Memory Technologies MCQ
- 181. CPU Scheduling MCQ
- 182. Software Architecture documentation MCQ
- 183. Deep Learning MCQs
- 184. Hadoop and Related Concepts MCQ
- 185. Transportation Models And Network Models MCQs
- 186. Design of Industrial Buildings MCQS
- 187. Pile foundations MCqs
- 188. Engineering Seismology MCQS
- 189. Game playing techniques MCQs
- 190. Sustainable Water Resources Management MCQs
- 191. Supercharging & Turbo charging MCQs
- 192. MICROPROCESSOR ARCHITECTURE MCQs
- 193. Introduction Automobile Fuels MCQs
- 194. Human factor engineering MCQs
- 195. Element Types and Characteristics MCQs
- 196. Air conditioning MCQS
- 197. Friction MCQs: Concepts and Analysis
- 198. Design of Gauges and Inspection Features MCQs

- 199. BIG DATA TECHNOLOGIES MCQs
- 200. Marketing MCqs