- 1. Which process utilizes electrolysis to remove metal from a workpiece?
- a) Chemical machining
- b) Electrochemical deburring
- c) Electrochemical grinding
- d) Electrochemical honing

Answer: c) Electrochemical grinding

Explanation: Electrochemical grinding is a process that uses electrolysis to remove metal from a workpiece. It combines the advantages of grinding with those of electrochemical machining.

- 2. What is the primary function of the electrolyte in electrochemical machining (ECM)?
- a) Lubrication
- b) Cooling
- c) Material removal
- d) Electrical insulation

Answer: c) Material removal

Explanation: The electrolyte in ECM acts as a medium through which the dissolved ions facilitate the removal of metal from the workpiece by electrochemical reactions.

- 3. Which type of power source is typically used in electrochemical machining?
- a) Direct current (DC)
- b) Alternating current (AC)
- c) Pneumatic

d) Hydraulic

Answer: a) Direct current (DC)

Explanation: Direct current is commonly used in electrochemical machining to provide the necessary electrical energy for the electrolytic process.

- 4. What is the purpose of the control system in electrochemical machining?
- a) To regulate the flow of electrolyte
- b) To adjust the voltage
- c) To maintain machining accuracy and consistency
- d) To control tool wear

Answer: c) To maintain machining accuracy and consistency

Explanation: The control system in ECM ensures that the machining process proceeds with the desired precision and consistency by regulating various parameters.

- 5. Which factor primarily determines the metal removal rate in electrochemical machining?
- a) Voltage
- b) Current density
- c) Electrolyte temperature
- d) Tool speed

Answer: b) Current density

Explanation: The metal removal rate in ECM is primarily determined by the current density, which influences the rate of electrochemical dissolution of the workpiece material.

- 6. Electrochemical deburring is primarily used for:
- a) Sharpening cutting tools
- b) Removing burrs from machined components
- c) Smoothing rough surfaces
- d) Adding surface texture

Answer: b) Removing burrs from machined components

Explanation: Electrochemical deburring is a process specifically designed to remove burrs, which are unwanted projections or rough edges, from machined components.

- 7. In electrochemical honing, the tool acts as:
- a) Anode
- b) Cathode
- c) Electrolyte dispenser
- d) Insulator

Answer: b) Cathode

Explanation: In electrochemical honing, the tool is connected to the negative terminal of the power source, making it the cathode in the electrochemical cell.

- 8. Which of the following is a common electrolyte used in electrochemical machining?
- a) Water
- b) Oil
- c) Sodium chloride solution
- d) Nitric acid

Answer: c) Sodium chloride solution

Explanation: Sodium chloride (salt) solution is commonly used as an electrolyte in electrochemical machining due to its ability to conduct electricity and facilitate the electrochemical reactions.

- 9. Electrochemical machining is a process suitable for machining:
- a) Only conductive materials
- b) Only non-conductive materials
- c) Both conductive and non-conductive materials
- d) Magnetic materials only

Answer: a) Only conductive materials

Explanation: Electrochemical machining can only be used to machine materials that conduct electricity, as the process relies on electrochemical reactions between the workpiece and the electrolyte.

- 10. What distinguishes electrochemical grinding from conventional grinding processes?
- a) Use of abrasive wheels
- b) Utilization of electrolyte
- c) High-speed rotation of the workpiece
- d) Absence of heat generation

Answer: b) Utilization of electrolyte

Explanation: Electrochemical grinding differs from conventional grinding processes by incorporating electrolyte to facilitate electrochemical dissolution of the workpiece material.

- 11. What type of surface finish is typically achieved through electrochemical grinding?
- a) Rough
- b) Smooth
- c) Matte
- d) Textured

Answer: b) Smooth

Explanation: Electrochemical grinding typically produces smooth surface finishes due to the combined mechanical and electrochemical action on the workpiece material.

- 12. Which of the following is NOT a common application of chemical machining?
- a) Etching patterns on semiconductor wafers
- b) Fabricating microfluidic devices
- c) Removing material from aerospace components
- d) Sharpening cutting tools

Answer: d) Sharpening cutting tools

Explanation: Chemical machining is not typically used for sharpening cutting tools, as it is more commonly employed for etching, shaping, or removing material from larger components.

- 13. Chemical machining primarily relies on:
- a) Mechanical abrasion
- b) Thermal energy
- c) Chemical reactions

d) Electrical discharge

Answer: c) Chemical reactions

Explanation: Chemical machining relies on chemical reactions between the workpiece material and the etchant to selectively remove material, rather than mechanical or thermal means.

- 14. What is the main advantage of electrochemical deburring over mechanical deburring methods?
- a) Higher material removal rate
- b) Greater precision
- c) Lower cost
- d) Reduced tool wear

Answer: b) Greater precision

Explanation: Electrochemical deburring offers greater precision compared to mechanical deburring methods, as it can target specific areas with burrs without affecting surrounding surfaces.

- 15. Which of the following is a common material used as a tool electrode in electrochemical machining?
- a) Copper
- b) Aluminum
- c) Titanium
- d) Stainless steel

Answer: a) Copper

Explanation: Copper is commonly used as a tool electrode in electrochemical machining due to its conductivity and compatibility with the electrochemical process.

Related posts:

- 1. Introduction of IC Engine MCQs
- 2. Combustion in SI engines MCQs
- 3. Combustion in CI Engines MCQs
- 4. Fuel MCOs
- 5. Supercharging & Turbo charging MCQs
- 6. Fundamental Aspects of Vibrations MCQs
- 7. Damped Free Vibrations: Viscous damping MCQs
- 8. Harmonically excited Vibration MCQS
- 9. Systems With Two Degrees of Freedom MCQs
- 10. Noise Engineering Subjective response of sound MCQs
- 11. Mechatronics Overview and Applications MCQs
- 12. REVIEW OF TRANSDUCERS AND SENSORS MCQs
- 13. MICROPROCESSOR ARCHITECTURE MCQs
- 14. Electrical and Hydraulic Actuators MCQs
- 15. SINGLE CONDITIONING MCQs
- 16. Dynamics of Engine Mechanisms MCQs
- 17. Governor Mechanisms MCQs
- 18. Balancing of Inertia Forces and Moments in Machines MCQs
- 19. Friction MCQs
- 20. Brakes MCQs
- 21. Introduction Automobile Fuels MCQs

- 22. Liquid alternative fuels MCQs
- 23. Gaseous Fuels MCQs
- 24. Automobile emissions MCQS
- 25. Emissions Norms & Measurement MCQs
- 26. Method study MCQs
- 27. Work measuremen MCQs
- 28. Job Contribution Evaluation MCQs
- 29. Human factor engineering MCQs
- 30. Display systems and anthropometric datA MCQs
- 31. Quality Management MCQs
- 32. Quality Management process MCQs
- 33. SQC-Control charts MCQs
- 34. Process diagnostics MCQs
- 35. Process improvement MCQs
- 36. Finite Element Method MCQs
- 37. Element Types and Characteristics MCQs
- 38. Assembly of Elements and Matrices MCQs
- 39. Higher Order and Isoparametric Elements MCQs
- 40. Static & Dynamic Analysis MCQs
- 41. Refrigeration & Cooling MCQs
- 42. Vapour compression system MCQs
- 43. Vapour absorption system MCQs
- 44. Psychometric MCQs
- 45. Air conditioning MCQS
- 46. Chassis & Body Engg MCQs
- 47. Steering System MCQs
- 48. Transmission System MCQs

- 49. Suspension system MCQs
- 50. Electrical and Control Systems MCQS
- 51. Emission standards and pollution control MCQs
- 52. Tribology and Surface Mechanics MCQs
- 53. Friction MCQs: Concepts and Analysis
- 54. Understanding Wear Mechanisms MCQs
- 55. Lubricants and Lubrication Standards MCQS
- 56. Nano Tribology MCQs
- 57. Machine Tools MCQs
- 58. Regulation of Speed MCQs
- 59. Design of Metal working Tools MCQs
- 60. Design of Jigs and Fixtures MCQs
- 61. Design of Gauges and Inspection Features MCQs
- 62. Production Systems MCQs
- 63. Work Study MCQs
- 64. Production Planning MCQs
- 65. Production and Inventory Control MCQs
- 66. Productivity MCQs
- 67. DESCRIPTIVE STATISTICS MCQs
- 68. INTRODUCTION TO BIG DATA MCOs
- 69. BIG DATA TECHNOLOGIES MCQs
- 70. Energy Management MCQs
- 71. Energy Audit MCQs
- 72. Material energy balance MCQs
- 73. Monitoring and Targeting MCQs
- 74. Thermal energy management MCQs
- 75. System Concepts MCQs

- 76. Management MCQs
- 77. Marketing MCqs
- 78. Productivity and Operations MCQs
- 79. Entrepreneurship MCQs
- 80. Introduction of MIS MCQs
- 81. Information systems for decision-making MCqs
- 82. System Design Quiz MCQs
- 83. Implementation, Evaluation and Maintenance of the MIS MCQs
- 84. Pitfalls in MIS Development MCQs
- 85. Steam generators and boilers MCQs
- 86. Vapour Cycles MCQs
- 87. Gas Dynamics MCQs
- 88. Air Compressors MCQs
- 89. Nozzles and Condensers MCQs
- 90. Introduction to stress in machine component MCQs
- 91. Shafts MCQS
- 92. Springs MCQs
- 93. Brakes & Clutches MCQs
- 94. Journal Bearing MCQs
- 95. Energy transfer in turbo machines MCQs
- 96. Steam turbines MCQs
- 97. Water turbines MCQs
- 98. Rotary Fans, Blowers and Compressors MCQs
- 99. Power transmitting turbo machines MCQs
- 100. Energy transfer in turbo machines MCQs
- 101. Steam turbines MCOs
- 102. Water turbines MCQS

- 103. Rotary Fans, Blowers and Compressors MCQs
- 104. Power transmitting turbo machines MCQs
- 105. Introduction to Computer Engineering MCQs
- 106. Types of Analysis MCQS
- 107. Heat Transfer and Conduction MCQs
- 108. Extended Surfaces (fins) MCQs
- 109. Convection MCQs
- 110. Thermal and Mass Transfer MCQs
- 111. Thermal Radiation & Boiling/Condensation MCQs
- 112. Mechanical processes MCQs
- 113. Thermal metal removal processes MCQs
- 114. Rapid prototyping fabrication methods MCQs
- 115. Technologies of micro fabrication MCQs
- 116. Power Plant Engineering MCQs
- 117. Fossil fuel steam stations MCQs
- 118. Nuclear Power Station MCOs
- 119. Hydro-Power Station MCQs
- 120. Power Station Economics MCOs
- 121. Design of Belt, Rope and Chain Drives MCQS
- 122. Spur and Helical Gears MCQs
- 123. Bevel Gears MCQs
- 124. Design of I.C. Engine Components MCQs
- 125. Linear system and distribution models MCQs
- 126. Supply chain (SCM) MCQs
- 127. Inventory models MCQs
- 128. Queueing Theory & Game Theory MCQs
- 129. Project Management & Meta-heuristics MCQs

- 130. Overview of Systems Engineering MCQS
- 131. Structure of Complex Systems MCQs
- 132. Concept Development and Exploration MCQs
- 133. Engineering Development MCQs
- 134. Basic Concepts & Laws of Thermodynamics MCQs
- 135. Properties of Steam MCQs
- 136. Air standard cycles MCQS
- 137. Fuels & combustion MCQs
- 138. Materials Science MCQs
- 139. Alloys and Materials MCQs
- 140. Metal Heat Treatment MCOs
- 141. Material Testing and Properties MCQs
- 142. Chemical Analysis of Metal Alloys MCQs
- 143. Stress and strain MCQs
- 144. Bending MCQs
- 145. Torsion in shafts MCQs
- 146. Theories of failures MCQs
- 147. Columns & struts MCQs
- 148. Manufacturing Process MCQs