Generalization:

Definition: Generalization is like combining two or more similar things to create a more general and abstract things.

Example: Think of different types of bank accounts like savings and current accounts. Generalization in this context would create a higher-level entity called "Account" that encompasses both savings and current accounts. It's like saying, "These are all types of accounts."

Specialization:

- Definition: Specialization is the opposite; it's breaking down a general thing into more specific parts.
- Example: Consider a general category like "Person." Specialization in this case would create two lower-level entities called "Employee" and "Customer." It's breaking down the general concept of a person into more specific roles.

Aggregation:

- Definition: Aggregation is treating relationships between things as if they are things themselves.
- Example: Imagine there's a relationship between employees, branches, and jobs.

EasyExamNotes.com Explain generalization, specialization and aggregation. OR Compare generalization, specialization and aggregation with suitable examples.

Aggregation would create a higher-level entity called 'works on' to represent this relationship. Additionally, you might have another relationship called 'Manages' between 'works on' and 'manager,' indicating who manages what tasks.

Comparison:

Aspect	Generalization	Specialization	Aggregation
Process Type	Bottom-up approach	Top-down approach	Abstraction

Aspect	Generalization	Specialization	Aggregation
Purpose	Combine common attributes of lower- level entities	Break down a higher- level entity into two or more lower-level entities	Treat relationships as higher-level entities
Effect on Schema Size	Reduces the schema size	Increases the schema size	Increases the schema size
Application Scope	Applied to a group of entities	Applied to a single entity	Applied to a group of relationships
Relationship with Entities	Common attributes form a new higher- level entity	Higher-level entity is broken down into lower-level entities	Relationships are treated as higher- level entities, participating in another relationship set

Related posts:

- 1. What is database management system (DBMS) ? What are the tasks performed by users in DBMS ?
- 2. What are the advantages and disadvantages of DBMS?
- 3. What do you understand by database users? Describe the different types of database users.
- 4. Who are data administrators? What are the functions of database administrator? OR Discuss the role of database administrator.
- 5. What is data abstraction? Explain different levels of abstraction.
- 6. Explain the differences between physical level, conceptual level and view level of data abstraction.

- 7. Explain the difference between database management system (DBMS) and file system.
- 8. Discuss the architecture of DBMS. What are the types of DBMS architecture?
- 9. What are data models? Briefly explain different types of data models.
- 10. Describe data schema and instances.
- 11. Describe data independence with its types
- 12. Describe the classification of database language. Which type of language is SQL?
- 13. Explain DBMS interfaces. What are the various DBMS interfaces?
- 14. What is ER model? What are the elements of ER model? What are the notations of ER diagram?
- 15. What do you understand by attributes and domain ?Explain various types of attributes used in conceptual data model.
- 16. Construct an ER diagram for University system.
- 17. Construct an ER diagram for the registrar's office
- 18. Explain the primary key, super key, foreign key and candidate key with example. OR Define key. Explain various types of keys.
- 19. What do you mean by a key to the relation? Explain the differences between super key, candidate key and primary key.
- 20. What is Unified Modeling Language? Explain different types of UML.
- 21. What is relational model? Explain with example.
- 22. Explain constraints and its types.
- 23. Consider the following relations:
- 24. What are the additional operations in relational algebra?
- 25. Explain integrity constraints.
- 26. Explain the following constraints: i. Entity integrity constraint. ii. Referential integrity constraint. iii. Domain constraint.
- 27. Describe mapping constraints with its types.
- 28. Explain how a database is modified in SQL. OR Explain database modification.

EasyExamNotes.com

Explain generalization, specialization and aggregation. OR Compare generalization, specialization and aggregation with suitable examples.

- 29. Discuss join and types with suitable example. Define join. Explain different types of join.
- 30. Describe the SQL set operations