- 1. What is the main purpose of facet model recognition?
- a) Labeling lines in images
- b) Understanding line drawings
- c) Classification of shapes by labeling of edges
- d) Recognition of shapes

Answer: c) Classification of shapes by labeling of edges

Explanation: Facet model recognition involves categorizing shapes by labeling their edges, aiding in the recognition of various geometric forms within images.

- 2. Which algorithm is commonly used for solving the labeling problem in facet model recognition?
- a) Depth-first search
- b) Breadth-first search
- c) Backtracking algorithm
- d) Dijkstra's algorithm

Answer: c) Backtracking algorithm

Explanation: The backtracking algorithm is frequently employed to solve the labeling problem in facet model recognition by exhaustively searching through possible solutions and backtracking when a dead-end is encountered.

- 3. In which branch of mathematics does perspective projective geometry primarily belong?
- a) Algebra
- b) Calculus
- c) Geometry
- d) Trigonometry

Answer: c) Geometry

Explanation: Perspective projective geometry is a subfield of geometry that deals with the principles and properties of perspective projections.

- 4. What does inverse perspective projection involve?
- a) Converting 3D objects into 2D images
- b) Converting 2D images into 3D objects
- c) Mapping 3D points to a 2D plane
- d) Mapping 2D points to a 3D space

Answer: b) Converting 2D images into 3D objects

Explanation: Inverse perspective projection refers to the process of reconstructing threedimensional objects from two-dimensional images, which is essential for tasks like photogrammetry.

- 5. Which technique is used to convert images from 2D to 3D in photogrammetry?
- a) Intensity matching
- b) Edge detection
- c) Perspective projection
- d) Inverse perspective projection

Answer: d) Inverse perspective projection

Explanation: Photogrammetry employs inverse perspective projection to reconstruct threedimensional structures from two-dimensional images captured from different viewpoints.

- 6. What is the primary goal of image matching in computer vision?
- a) Identifying objects

- b) Enhancing image resolution
- c) Adjusting brightness and contrast
- d) Aligning corresponding features in different images

Answer: d) Aligning corresponding features in different images

Explanation: Image matching aims to find corresponding features or points between different images, facilitating tasks like object recognition and alignment.

- 7. Which method is commonly used for matching intensity signals in images?
- a) Histogram equalization
- b) Template matching
- c) Fourier transform
- d) Edge detection

Answer: b) Template matching

Explanation: Template matching involves comparing the intensity patterns of a predefined template with regions in an image to find matches.

- 8. What aspect of images does hierarchical image matching focus on?
- a) Global features
- b) Local features
- c) Color distribution
- d) Texture analysis

Answer: a) Global features

Explanation: Hierarchical image matching emphasizes identifying similarities based on global characteristics of images, such as overall shape or structure, rather than local details.

- 9. In the context of object models and matching, what are global features?
- a) Small-scale patterns
- b) Large-scale patterns
- c) Texture details
- d) Color variations

Answer: b) Large-scale patterns

Explanation: Global features in object models refer to large-scale patterns or characteristics of objects, which are typically invariant to local variations.

- 10. Which type of features is more suitable for capturing fine details in object models?
- a) Global features
- b) Local features
- c) Color features
- d) Shape features

Answer: b) Local features

Explanation: Local features are better suited for capturing fine details and specific characteristics of objects, making them essential for tasks like object recognition and matching.

- 11. What is the primary focus of facet model recognition?
- a) Matching 3D models to 2D images
- b) Labeling lines and edges in images
- c) Generating photorealistic renderings
- d) Analyzing color gradients in images

Answer: b) Labeling lines and edges in images

Explanation: Facet model recognition primarily involves the identification and labeling of lines and edges within images to facilitate shape classification and recognition.

- 12. Which algorithm is commonly used for solving the consisting labeling problem in facet model recognition?
- a) A* algorithm
- b) Genetic algorithm
- c) Backtracking algorithm
- d) Simulated annealing algorithm

Answer: c) Backtracking algorithm

Explanation: The backtracking algorithm is frequently employed to solve the consisting labeling problem in facet model recognition by exhaustively exploring possible solutions and backtracking when necessary.

- 13. What is the fundamental principle of perspective projective geometry?
- a) Maintaining parallel lines in projections
- b) Preserving angles between lines
- c) Minimizing distortions in images
- d) Reflecting light rays from surfaces

Answer: b) Preserving angles between lines

Explanation: Perspective projective geometry revolves around the principle of preserving angles between lines in projections, which is essential for maintaining the perceived spatial relationships in images.

- 14. In photogrammetry, what does the term "image matching" primarily refer to?
- a) Adjusting image brightness
- b) Aligning corresponding points in images
- c) Enhancing image resolution
- d) Filtering image noise

Answer: b) Aligning corresponding points in images

Explanation: In photogrammetry, image matching primarily involves finding corresponding points or features in different images, enabling the reconstruction of three-dimensional structures.

- 15. What distinguishes inverse perspective projection from perspective projection?
- a) Direction of projection
- b) Number of dimensions
- c) Type of objects involved
- d) Level of distortion

Answer: a) Direction of projection

Explanation: Inverse perspective projection involves projecting points from a two-dimensional plane to a three-dimensional space, whereas perspective projection projects points from a three-dimensional space onto a two-dimensional plane.

- 16. Which method is commonly used for matching 2D images in computer vision tasks?
- a) Histogram matching
- b) Template matching
- c) Edge detection
- d) Fourier transform

Answer: b) Template matching

Explanation: Template matching is a common method used for comparing patterns in images to find matches, which is essential for tasks like object recognition and image alignment.

- 17. What aspect of images does hierarchical image matching primarily focus on?
- a) Color distribution
- b) Texture analysis
- c) Local features
- d) Global features

Answer: d) Global features

Explanation: Hierarchical image matching emphasizes identifying similarities based on global characteristics of images, such as overall shape or structure, rather than local details.

- 18. In the context of object models and matching, what do local features represent?
- a) Small-scale patterns
- b) Large-scale patterns
- c) Color variations
- d) Texture details

Answer: a) Small-scale patterns

Explanation: Local features in object models represent small-scale patterns or characteristics of objects, which are essential for capturing fine details and specific attributes.

- 19. What distinguishes global features from local features in object models?
- a) Scale of representation
- b) Color depth

- c) Texture complexity
- d) Geometric properties

Answer: a) Scale of representation

Explanation: Global features represent large-scale patterns or characteristics of objects, whereas local features represent small-scale patterns or details, differing primarily in their scale of representation.

- 20. Which type of features is more suitable for capturing overall shape characteristics in object models?
- a) Global features
- b) Local features
- c) Color features
- d) Texture features

Answer: a) Global features

Explanation: Global features are better suited for capturing overall shape characteristics and large-scale patterns in object models, making them essential for tasks like shape recognition and classification.

Related posts:

- 1. Introduction to Information Security
- 2. Introduction to Information Security MCQ
- 3. Introduction to Information Security MCQ
- 4. Symmetric Key Cryptography MCQ
- 5. Asymmetric Key Cryptography MCQ
- 6. Authentication & Integrity MCQ

Facet Model Recognition MCQs

7. E-mail, IP and Web Security MCQ