- 1. What is the definition of Mach number in gas dynamics?
- a) The speed of sound in a fluid
- b) The ratio of the fluid velocity to the speed of light
- c) The ratio of the fluid velocity to the speed of sound
- d) The ratio of the fluid density to the speed of sound

Correct Answer: c) The ratio of the fluid velocity to the speed of sound

Explanation: Mach number is defined as the ratio of the fluid velocity to the speed of sound in that fluid. It is a dimensionless quantity used to describe the speed of an object moving through a fluid medium, such as air or water.

- 2. What is formed when an object moves through a fluid at a speed greater than the speed of sound?
- a) Mach cone
- b) Stagnation properties
- c) Isentropic flow
- d) Velocity coefficient

Correct Answer: a) Mach cone

Explanation: When an object moves through a fluid at a speed greater than the speed of sound, it creates a cone-shaped shock wave known as a Mach cone.

3. In a one-dimensional isentropic flow of ideal gases through a variable area duct, how does the area ratio change with Mach number?

- a) Increases linearly
- b) Decreases linearly
- c) Remains constant
- d) Varies exponentially

Correct Answer: d) Varies exponentially

Explanation: In a one-dimensional isentropic flow of ideal gases through a variable area duct, the area ratio (ratio of the cross-sectional area at any point to the initial cross-sectional area) changes exponentially with Mach number.

- 4. What is the critical pressure ratio in gas dynamics?
- a) The pressure ratio at which the flow becomes sonic
- b) The pressure ratio at which the flow becomes supersonic
- c) The pressure ratio at which the flow becomes subsonic
- d) The pressure ratio at which the flow becomes hypersonic

Correct Answer: a) The pressure ratio at which the flow becomes sonic

Explanation: The critical pressure ratio is the pressure ratio at which the flow in a convergingdiverging nozzle becomes sonic (Mach number equals 1).

- 5. What is the effect of friction on the flow of gases in ducts?
- a) Increases the flow velocity
- b) Decreases the flow velocity
- c) Has no effect on the flow velocity

d) Creates turbulence

Correct Answer: b) Decreases the flow velocity

Explanation: Friction between the gas and the walls of the duct tends to decrease the flow velocity by converting some of the kinetic energy of the gas into heat.

- 6. What does the coefficient of discharge represent in fluid dynamics?
- a) Efficiency of a diffuser
- b) Efficiency of a nozzle
- c) Efficiency of a pump
- d) Efficiency of an orifice

Correct Answer: d) Efficiency of an orifice

Explanation: The coefficient of discharge represents the efficiency of an orifice in terms of how much flow it allows relative to the theoretical maximum flow.

- 7. What is the function of a diffuser in a fluid flow system?
- a) Increases pressure and decreases velocity
- b) Decreases pressure and increases velocity
- c) Increases pressure and velocity
- d) Decreases pressure and velocity

Correct Answer: a) Increases pressure and decreases velocity

Gas Dynamics MCQs

Explanation: A diffuser is a device used to slow down fluid flow and increase pressure.

8. What phenomenon occurs when a supersonic flow is abruptly slowed down to subsonic

speed?

a) Mach cone

b) Stagnation properties

c) Isentropic flow

d) Normal shock

Correct Answer: d) Normal shock

Explanation: A normal shock is a sudden and strong change in the flow properties, such as pressure, temperature, and velocity, that occurs when a supersonic flow is abruptly slowed down to subsonic speed.

9. What property remains constant across a normal shock in an ideal gas?

a) Pressure

b) Velocity

c) Density

d) Temperature

Correct Answer: a) Pressure

Explanation: Across a normal shock in an ideal gas, the pressure remains constant while other properties such as density, velocity, and temperature change.

- 10. What is the velocity coefficient used for in fluid dynamics?
- a) To calculate the speed of sound in a fluid
- b) To correct for friction losses in flow measurement
- c) To determine the efficiency of a diffuser
- d) To adjust the area ratio in variable area ducts

Correct Answer: b) To correct for friction losses in flow measurement

Explanation: The velocity coefficient is used to correct for friction losses in flow measurement devices like pitot tubes or venturi meters, allowing for more accurate determination of flow velocity.

## Related posts:

- Steam generators and boilers MCQs
- 2. Vapour Cycles MCQs
- 3. Air Compressors MCQs
- 4. Nozzles and Condensers MCQs
- 5. Introduction to stress in machine component MCQs
- 6. Shafts MCQS
- 7. Springs MCQs
- 8. Brakes & Clutches MCQs
- 9. Journal Bearing MCQs
- 10. Energy transfer in turbo machines MCQs
- 11. Steam turbines MCQs
- 12. Water turbines MCOs
- 13. Rotary Fans, Blowers and Compressors MCQs

- 14. Power transmitting turbo machines MCQs
- 15. Energy transfer in turbo machines MCQs
- 16. Steam turbines MCQs
- 17. Water turbines MCQS
- 18. Rotary Fans, Blowers and Compressors MCQs
- 19. Power transmitting turbo machines MCQs
- 20. Introduction to Computer Engineering MCQs
- 21. Types of Analysis MCQS
- 22. Heat Transfer and Conduction MCQs
- 23. Extended Surfaces (fins) MCQs
- 24. Convection MCQs
- 25. Thermal and Mass Transfer MCQs
- 26. Thermal Radiation & Boiling/Condensation MCQs
- 27. Mechanical processes MCQs
- 28. Electrochemical and chemical metal removal processes MCQs
- 29. Thermal metal removal processes MCQs
- 30. Rapid prototyping fabrication methods MCQs
- 31. Technologies of micro fabrication MCQs
- 32. Power Plant Engineering MCQs
- 33. Fossil fuel steam stations MCOs
- 34. Nuclear Power Station MCQs
- 35. Hydro-Power Station MCQs
- 36. Power Station Economics MCQs
- 37. Design of Belt, Rope and Chain Drives MCQS
- 38. Spur and Helical Gears MCOs
- 39. Bevel Gears MCQs
- 40. Design of I.C. Engine Components MCQs

- 41. Linear system and distribution models MCQs
- 42. Supply chain (SCM) MCQs
- 43. Inventory models MCQs
- 44. Queueing Theory & Game Theory MCQs
- 45. Project Management & Meta-heuristics MCQs
- 46. Overview of Systems Engineering MCQS
- 47. Structure of Complex Systems MCQs
- 48. Concept Development and Exploration MCQs
- 49. Engineering Development MCQs
- 50. Basic Concepts & Laws of Thermodynamics MCQs
- 51. Properties of Steam MCQs
- 52. Air standard cycles MCQS
- 53. Fuels & combustion MCQs
- 54. Materials Science MCQs
- 55. Alloys and Materials MCQs
- 56. Metal Heat Treatment MCQs
- 57. Material Testing and Properties MCQs
- 58. Chemical Analysis of Metal Alloys MCQs
- 59. Stress and strain MCQs
- 60. Bending MCQs
- 61. Torsion in shafts MCQs
- 62. Theories of failures MCOs
- 63. Columns & struts MCQs
- 64. Manufacturing Process MCQs