- 1. Which of the following is NOT a type of governor mechanism?
- a) Centrifugal governor
- b) Inertia governor
- c) Magnetic governor
- d) Gravity governor

Answer: c) Magnetic governor

Explanation: Magnetic governors are not a common type of governor mechanism.

Centrifugal, inertia, and gravity governors are more widely used in various applications.

- 2. Centrifugal governors are primarily driven by:
- a) Gravity
- b) Electric motors
- c) Centrifugal force
- d) Magnetism

Answer: c) Centrifugal force

Explanation: Centrifugal governors operate based on the centrifugal force generated by rotating masses.

- 3. What are the primary characteristics of centrifugal governors?
- a) They regulate speed through centrifugal force
- b) They rely on spring tension
- c) They are primarily used in low-speed applications
- d) They are unaffected by changes in load

Answer: a) They regulate speed through centrifugal force

Explanation: Centrifugal governors work by adjusting the position of weights or masses in response to changes in speed, thus regulating the system.

- 4. Which type of centrifugal governor is controlled by the combined action of gravity and spring force?
- a) Gravity-controlled governor
- b) Spring-controlled governor
- c) Hybrid governor
- d) Centrifugal-spring governor

Answer: d) Centrifugal-spring governor

Explanation: Centrifugal-spring governors use a combination of centrifugal force and spring tension to regulate speed.

- 5. What is the "hunting" phenomenon in centrifugal governors?
- a) The rapid fluctuation of speed
- b) The tendency of the governor to overshoot its set speed
- c) The governor's inability to maintain a steady speed
- d) The hunting season for governors

Answer: b) The tendency of the governor to overshoot its set speed

Explanation: Hunting refers to the oscillation or repeated overshooting and undershooting of the desired speed by a centrifugal governor.

- 6. Gravity-controlled centrifugal governors rely on:
- a) Centrifugal force
- b) Spring tension

- c) Gravity
- d) Magnetic fields

Answer: c) Gravity

Explanation: Gravity-controlled governors use the force of gravity acting on weights to regulate speed.

- 7. Inertia governors utilize:
- a) Springs
- b) Centrifugal force
- c) The inertia of rotating masses
- d) Magnetic fields

Answer: c) The inertia of rotating masses

Explanation: Inertia governors rely on the inertia of rotating masses to regulate speed, often without the need for external forces like springs.

- 8. What is the main advantage of inertia governors over centrifugal governors?
- a) Greater precision
- b) Simplicity of design
- c) Higher efficiency
- d) Resistance to hunting

Answer: d) Resistance to hunting

Explanation: Inertia governors are less prone to hunting, making them advantageous in applications where precise speed control is required.

9. Which type of governor is commonly used in steam engines?

- a) Centrifugal governor
- b) Inertia governor
- c) Gravity governor
- d) Magnetic governor

Answer: a) Centrifugal governor

Explanation: Centrifugal governors are historically and commonly used in steam engines to regulate speed.

- 10. The primary function of a governor mechanism is to:
- a) Generate electricity
- b) Regulate speed
- c) Control temperature
- d) Transmit torque

Answer: b) Regulate speed

Explanation: Governor mechanisms are designed to control and regulate the speed of machines or engines by adjusting fuel, air, or other parameters in response to changes in load or external conditions.

Related posts:

- 1. Steam generators and boilers MCQs
- 2. Vapour Cycles MCQs
- 3. Gas Dynamics MCQs
- 4. Air Compressors MCQs
- 5. Nozzles and Condensers MCQs
- 6. Introduction to stress in machine component MCQs

- 7. Shafts MCQS
- 8. Springs MCQs
- 9. Brakes & Clutches MCQs
- 10. Journal Bearing MCQs
- 11. Energy transfer in turbo machines MCQs
- 12. Steam turbines MCQs
- 13. Water turbines MCQs
- 14. Rotary Fans, Blowers and Compressors MCQs
- 15. Power transmitting turbo machines MCQs
- 16. Energy transfer in turbo machines MCQs
- 17. Steam turbines MCQs
- 18. Water turbines MCQS
- 19. Rotary Fans, Blowers and Compressors MCQs
- 20. Power transmitting turbo machines MCQs
- 21. Introduction to Computer Engineering MCQs
- 22. Types of Analysis MCQS
- 23. Heat Transfer and Conduction MCQs
- 24. Extended Surfaces (fins) MCQs
- 25. Convection MCQs
- 26. Thermal and Mass Transfer MCQs
- 27. Thermal Radiation & Boiling/Condensation MCQs
- 28. Mechanical processes MCQs
- 29. Electrochemical and chemical metal removal processes MCQs
- 30. Thermal metal removal processes MCQs
- 31. Rapid prototyping fabrication methods MCQs
- 32. Technologies of micro fabrication MCQs
- 33. Power Plant Engineering MCQs

- 34. Fossil fuel steam stations MCQs
- 35. Nuclear Power Station MCQs
- 36. Hydro-Power Station MCQs
- 37. Power Station Economics MCQs
- 38. Design of Belt, Rope and Chain Drives MCQS
- 39. Spur and Helical Gears MCQs
- 40. Bevel Gears MCQs
- 41. Design of I.C. Engine Components MCQs
- 42. Linear system and distribution models MCQs
- 43. Supply chain (SCM) MCQs
- 44. Inventory models MCQs
- 45. Queueing Theory & Game Theory MCQs
- 46. Project Management & Meta-heuristics MCQs
- 47. Overview of Systems Engineering MCQS
- 48. Structure of Complex Systems MCQs
- 49. Concept Development and Exploration MCQs
- 50. Engineering Development MCQs
- 51. Basic Concepts & Laws of Thermodynamics MCQs
- 52. Properties of Steam MCQs
- 53. Air standard cycles MCQS
- 54. Fuels & combustion MCOs
- 55. Materials Science MCOs
- 56. Alloys and Materials MCQs
- 57. Metal Heat Treatment MCQs
- 58. Material Testing and Properties MCQs
- 59. Chemical Analysis of Metal Alloys MCQs
- 60. Stress and strain MCQs

- 61. Bending MCQs
- 62. Torsion in shafts MCQs
- 63. Theories of failures MCQs
- 64. Columns & struts MCQs
- 65. Manufacturing Process MCQs