
Heap Sort

EasyExamNotes.com Heap Sort

Heap Sort is a comparison-based sorting algorithm that uses a binary heap data structure to
sort elements.

It involves two main steps: building a heap from the input list and repeatedly extracting the
maximum (or minimum) element from the heap to obtain the sorted list.

Here’s how the Heap Sort algorithm works:

1. Build a max-heap from the input list:

Starting with the second-to-last level and moving upwards, heapify each subtree by
comparing the parent node with its children and swapping if necessary.
Continue this process until the entire list is transformed into a max-heap, where each
parent node is greater than or equal to its children (in case of a max-heap).

2. Repeatedly extract the maximum element from the heap and place it at the end of the list:

The maximum element is always located at the root of the max-heap. Swap it with the
last element in the heap (which is the smallest remaining element in the unsorted part
of the list).
Reduce the heap size by one to exclude the extracted element from future
consideration.
Restore the heap property by heapifying the new root (the previously last element of
the heap) to maintain the max-heap structure.

3. Repeat step 2 until all elements have been extracted from the heap:

Each iteration will extract the maximum element and place it at the corresponding



Heap Sort

EasyExamNotes.com Heap Sort

position in the sorted part of the list.

Example:

Consider the following unsorted list of integers: [5, 3, 8, 2, 1].

Step 1: Building the max-heap

Convert the list into a max-heap: [8, 5, 3, 2, 1].

Step 2: Extracting elements from the max-heap

Extract the maximum element (8) and swap it with the last element (1). Reduce the
heap size.
The list becomes [1, 5, 3, 2, 8].
Heapify the new root (1) to restore the max-heap structure: [5, 2, 3, 1, 8].
Extract the maximum element (5) and swap it with the last element (1). Reduce the
heap size.
The list becomes [1, 2, 3, 5, 8].
Heapify the new root (1) to restore the max-heap structure: [3, 2, 1, 5, 8].
Extract the maximum element (3) and swap it with the last element (1). Reduce the
heap size.
The list becomes [1, 2, 1, 5, 3].
Heapify the new root (1) to restore the max-heap structure: [2, 1, 1, 5, 3].
Extract the maximum element (2) and swap it with the last element (1). Reduce the
heap size.
The list becomes [1, 1, 2, 5, 3].
Heapify the new root (1) to restore the max-heap structure: [1, 1, 2, 5, 3].



Heap Sort

EasyExamNotes.com Heap Sort

Extract the maximum element (1) and swap it with the last element (3). Reduce the
heap size.
The list becomes [1, 1, 2, 3, 5].
Heapify the new root (1) to restore the max-heap structure: [1, 1, 2, 3, 5].

Step 3: All elements have been extracted

The final sorted list is [1, 1, 2, 3, 5, 8].

Heap Sort has a time complexity of O(n log n) in all cases, where ‘n’ is the number of
elements in the list.

It is an in-place sorting algorithm and is not affected by the initial order of the elements.
However, Heap Sort requires additional space for the heap structure.


