- 1. What is a compiler?
 - a) A hardware device
 - b) A software program
 - c) A peripheral device
 - d) A storage device

Answer: b) A software program

Explanation: A compiler is a software program that translates source code written in a high-level programming language into machine code that can be understood and executed by a computer.

- 2. Which of the following is a major data structure used in compilers?
 - a) Arrays
 - b) Stacks
 - c) Trees
 - d) Linked lists

Answer: c) Trees

Explanation: Trees, particularly Abstract Syntax Trees (ASTs), are commonly used in compilers for representing the structure of source code.

- 3. How many types of compilers are there based on the translation process?
 - a) One
 - b) Two
 - c) Three
 - d) Four

Answer: b) Two

Explanation: Compilers can be classified into two types based on the translation process: Single-pass compilers and Multi-pass compilers.

- 4. Which part of the compiler translates high-level code into intermediate code?
 - a) Front-end

- b) Back-end
- c) Middle-end
- d) Preprocessor

Answer: a) Front-end

Explanation: The front-end of the compiler translates high-level source code into an intermediate representation or code.

- 5. Which part of the compiler generates machine code from the intermediate code?
 - a) Front-end
 - b) Back-end
 - c) Middle-end
 - d) Postprocessor

Answer: b) Back-end

Explanation: The back-end of the compiler generates machine code from the intermediate representation produced by the front-end.

- 6. Which model of compilation involves two phases: analysis and synthesis?
 - a) Single-pass model
 - b) Multi-pass model
 - c) Analysis-synthesis model
 - d) Interpretation model

Answer: c) Analysis-synthesis model

Explanation: The analysis-synthesis model involves two main phases: analysis, where the source code is analyzed, and synthesis, where the target code is generated.

- 7. Which phase of the compiler checks the syntax of the source code?
 - a) Lexical analysis
 - b) Semantic analysis
 - c) Syntax analysis
 - d) Code generation

Answer: c) Syntax analysis

Explanation: Syntax analysis, also known as parsing, checks the syntax of the source code to ensure it follows the rules of the programming language's grammar.

- 8. What is the purpose of lexical analysis in a compiler?
 - a) Checking syntax errors
 - b) Generating machine code
 - c) Tokenizing the source code
 - d) Optimizing code

Answer: c) Tokenizing the source code

Explanation: Lexical analysis breaks the source code into tokens such as keywords, identifiers, operators, etc., which are the basic building blocks of the language.

- 9. Which phase of lexical analysis involves grouping characters into tokens?
 - a) Input buffering
 - b) Token specification
 - c) Token recognition
 - d) Token generation

Answer: c) Token recognition

Explanation: Token recognition involves identifying and grouping characters into tokens based on predefined patterns.

- 10. Which tool is used for generating lexical analyzers automatically?
 - a) Yacc
 - b) Bison
 - c) Flex
 - d) ANTLR

Answer: c) Flex

Explanation: Flex is a tool for generating lexical analyzers automatically based on regular expressions specified by the user.

- 11. What does LEX stand for?
 - a) Lexical Extraction
 - b) Lexical Extension
 - c) Lexical Analyzer Generator
 - d) Lexical Expression

Answer: c) Lexical Analyzer Generator

Explanation: LEX is a lexical analyzer generator that produces lexical analyzers based on user-specified regular expressions.

- 12. Which phase of the compiler handles input buffering?
 - a) Lexical analysis
 - b) Syntax analysis
 - c) Semantic analysis
 - d) Code generation

Answer: a) Lexical analysis

Explanation: Input buffering involves reading characters from the source file and buffering them for processing by the lexical analyzer.

- 13. Which data structure is commonly used for implementing symbol tables in compilers?
 - a) Arrays
 - b) Linked lists
 - c) Hash tables
 - d) Trees

Answer: c) Hash tables

Explanation: Hash tables are commonly used for implementing symbol tables due to their efficiency in searching, insertion, and deletion operations.

- 14. Which phase of the compiler checks the meaning of the source code?
 - a) Lexical analysis
 - b) Syntax analysis

- c) Semantic analysis
- d) Code generation

Answer: c) Semantic analysis

Explanation: Semantic analysis checks the meaning of the source code, ensuring that it adheres to the language's semantic rules.

- 15. Which phase of the compiler translates intermediate code into machine code?
 - a) Lexical analysis
 - b) Syntax analysis
 - c) Semantic analysis
 - d) Code generation

Answer: d) Code generation

Explanation: Code generation translates the intermediate representation produced by earlier phases into machine code for execution by the target machine.

- 16. Which part of the compiler optimizes the generated code for efficiency?
 - a) Lexical analysis
 - b) Syntax analysis
 - c) Semantic analysis
 - d) Code optimization

Answer: d) Code optimization

Explanation: Code optimization improves the efficiency of the generated code by applying various transformations to reduce execution time or memory usage.

- 17. Which phase of the compiler resolves references to variables and functions?
 - a) Lexical analysis
 - b) Syntax analysis
 - c) Semantic analysis
 - d) Code generation

Answer: c) Semantic analysis

Explanation: Semantic analysis resolves references to variables and functions by checking their declarations and ensuring their correct usage.

- 18. Which part of the compiler translates source code into an intermediate representation?
 - a) Front-end
 - b) Back-end
 - c) Middle-end
 - d) Preprocessor

Answer: a) Front-end

Explanation: The front-end of the compiler translates source code into an intermediate representation, which is then processed by the back-end.

- 19. Which phase of the compiler removes unnecessary code and reduces code size?
 - a) Lexical analysis
 - b) Syntax analysis
 - c) Semantic analysis
 - d) Code optimization

Answer: d) Code optimization

Explanation: Code optimization removes unnecessary code and reduces code size to improve performance and reduce memory usage.

- 20. Which part of the compiler performs error checking and reporting?
 - a) Front-end
 - b) Back-end
 - c) Middle-end
 - d) Preprocessor

Answer: a) Front-end

Explanation: The front-end of the compiler performs error checking and reporting to identify syntax and semantic errors in the source code.

Related posts:

- 1. Syntax Analysis & Syntax Directed Translation MCQs
- 2. Type Checking & Run Time Environment MCQs
- 3. Code Generation MCOs
- 4. Code Optimization MCQs
- Introduction to Energy Science MCQ
- 6. Ecosystems MCQ
- 7. Biodiversity and its conservation MCQ
- 8. Environmental Pollution mcq
- 9. Social Issues and the Environment MCQ
- 10. Field work mcg
- 11. Discrete Structure MCQ
- 12. Set Theory, Relation, and Function MCQ
- 13. Propositional Logic and Finite State Machines MCQ
- 14. Graph Theory and Combinatorics MCQ
- 15. Relational algebra, Functions and graph theory MCQ
- 16. Data Structure MCQ
- 17. Stacks MCO
- 18. TREE MCO
- 19. Graphs MCQ
- 20. Sorting MCQ
- 21. Digital Systems MCQ
- 22. Combinational Logic MCQ
- 23. Sequential logic MCQ
- 24. Analog/Digital Conversion, Logic Gates, Multivibrators, and IC 555 MCQ
- 25. Introduction to Digital Communication MCQ

- 26. Introduction to Object Oriented Thinking & Object Oriented Programming MCQ
- 27. Encapsulation and Data Abstraction MCQ
- 28. MCQ
- 29. Relationships Inheritance MCQ
- 30. Polymorphism MCQ
- 31. Library Management System MCQ
- 32. Numerical Methods MCQ
- 33. Transform Calculus MCQ
- 34. Concept of Probability MCQ
- 35. Algorithms, Designing MCQ
- 36. Study of Greedy strategy MCQ
- 37. Concept of dynamic programming MCQ
- 38. Algorithmic Problem MCQ
- 39. Trees, Graphs, and NP-Completeness MCQ
- 40. The Software Product and Software Process MCQ
- 41. Software Design MCQ
- 42. Software Analysis and Testing MCQ
- 43. Software Maintenance & Software Project Measurement MCQ
- 44. Computer Architecture, Design, and Memory Technologies MCQ
- 45. Basic Structure of Computer MCQ
- 46. Computer Arithmetic MCQ
- 47. I/O Organization MCQ
- 48. Memory Organization MCQ
- 49. Multiprocessors MCQ
- 50. Introduction to Operating Systems MCQ
- 51. File Systems MCQ
- 52. CPU Scheduling MCQ

- 53. Memory Management MCQ
- 54. Input / Output MCQ
- 55. Operating Systems and Concurrency
- 56. Software Development and Architecture MCQ
- 57. Software architecture models MCQ
- 58. Software architecture implementation technologies MCQ
- 59. Software Architecture analysis and design MCQ
- 60. Software Architecture documentation MCQ
- 61. Introduction to Computational Intelligence MCQ
- 62. Fuzzy Systems MCQ
- 63. Genetic Algorithms MCQ
- 64. Rough Set Theory MCQ
- 65. Introduction to Swarm Intelligence, Swarm Intelligence Techniques MCQ
- 66. Neural Network History and Architectures MCQ
- 67. Autoencoder MCQ
- 68. Deep Learning MCQs
- 69. RL & Bandit Algorithms MCQs
- 70. RL Techniques MCQs
- 71. Review of traditional networks MCQ
- 72. Study of traditional routing and transport MCQ
- 73. Wireless LAN MCQ
- 74. Mobile transport layer MCQ
- 75. Big Data MCQ
- 76. Hadoop and Related Concepts MCQ
- 77. Hive, Pig, and ETL Processing MCQ
- 78. NoSQL MCQs Concepts, Variations, and MongoDB
- 79. Mining social Network Graphs MCQ

- 80. Mathematical Background for Cryptography MCQ
- 81. Cryptography MCQ
- 82. Cryptographic MCQs
- 83. Information Security MCQ
- 84. Cryptography and Information Security Tools MCQ
- 85. Data Warehousing MCQ
- 86. OLAP Systems MCQ
- 87. Introduction to Data& Data Mining MCQ
- 88. Supervised Learning MCQ
- 89. Clustering & Association Rule mining MCQ
- 90. Fundamentals of Agile Process MCQ
- 91. Agile Projects MCQs
- 92. Introduction to Scrum MCQs
- 93. Introduction to Extreme Programming (XP) MCQs
- 94. Agile Software Design and Development MCQs
- 95. Machine Learning Fundamentals MCQs
- 96. Neural Network MCQs
- 97. CNNs MCQ
- 98. Reinforcement Learning and Sequential Models MCQs
- 99. Machine Learning in ImageNet Competition mcq
- 100. Computer Network MCQ
- 101. Data Link Layer MCQ
- 102. MAC Sub layer MCQ
- 103. Network Layer MCQ
- 104. Transport Layer MCQ
- 105. Raster Scan Displays MCQs
- 106. 3-D Transformations MCQs

- 107. Visualization MCQ
- 108. Multimedia MCQs
- 109. INTRODUCTION Knowledge Management MCQs
- 110. Organization and Knowledge Management MCQs
- 111. Telecommunications and Networks in Knowledge Management MCQs
- 112. Components of a Knowledge Strategy MCQs
- 113. Advanced topics and case studies in knowledge management MCQs
- 114. Conventional Software Management MCQs
- 115. Software Management Process MCQs
- 116. Software Management Disciplines MCQs
- 117. Rural Management MCQs
- 118. Human Resource Management for rural India MCQs
- 119. Management of Rural Financing MCQs
- 120. Research Methodology MCQs
- 121. Research Methodology MCQs
- 122. IoT MCOs
- 123. Sensors and Actuators MCQs
- 124. IoT MCQs: Basics, Components, Protocols, and Applications
- 125. MCQs on IoT Protocols
- 126. IoT MCQs
- 127. INTRODUCTION Block Chain Technologies MCQs
- 128. Understanding Block chain with Crypto currency MCQs
- 129. Understanding Block chain for Enterprises MCQs
- 130. Enterprise application of Block chain MCQs
- 131. Block chain application development MCQs
- 132. MCQs on Service Oriented Architecture, Web Services, and Cloud Computing
- 133. Utility Computing, Elastic Computing, Ajax MCQs

- 134. Data in the cloud MCQs
- 135. Cloud Security MCQs
- 136. Issues in cloud computinG MCQs
- 137. Introduction to modern processors MCQs
- 138. Data access optimizations MCQs
- 139. Parallel Computing MCQs
- 140. Efficient Open MP Programming MCQs
- 141. Distributed Memory parallel programming with MPI MCQs
- 142. Review of Object Oriented Concepts and Principles MCQs.
- 143. Introduction to RUP MCQs.
- 144. UML and OO Analysis MCQs
- 145. Object Oriented Design MCQs
- 146. Object Oriented Testing MCQs
- 147. CVIP Basics MCQs
- 148. Image Representation and Description MCQs
- 149. Region Analysis MCQs
- 150. Facet Model Recognition MCQs
- 151. Knowledge Based Vision MCQs
- 152. Game Design and Semiotics MCQs
- 153. Systems and Interactivity Understanding Choices and Dynamics MCQs
- 154. Game Rules Overview Concepts and Case Studies MCQs
- 155. IoT Essentials MCQs
- 156. Sensor and Actuator MCQs
- 157. IoT Networking & Technologies MCQs
- 158. MQTT, CoAP, XMPP, AMQP MCQs
- 159. IoT MCQs: Platforms, Security, and Case Studies
- 160. MCQs on Innovation and Entrepreneurship

- 161. Innovation Management MCQs
- 162. Stage Gate Method & Open Innovation MCQs
- 163. Innovation in Business: MCQs
- 164. Automata Theory MCQs
- 165. Finite Automata MCQs
- 166. Grammars MCQs
- 167. Push down Automata MCQs
- 168. Turing Machine MCQs
- 169. Database Management System (DBMS) MCQs
- 170. Relational Data models MCQs
- 171. Data Base Design MCQs
- 172. Transaction Processing Concepts MCQs
- 173. Control Techniques MCQs
- 174. DBMS Concepts & SQL Essentials MCQs
- 175. DESCRIPTIVE STATISTICS MCQs
- 176. INTRODUCTION TO BIG DATA MCQ
- 177. BIG DATA TECHNOLOGIES MCQs
- 178. PROCESSING BIG DATA MCQs
- 179. HADOOP MAPREDUCE MCQs
- 180. BIG DATA TOOLS AND TECHNIQUES MCQs
- 181. Pattern Recognition MCQs
- 182. Classification Algorithms MCQs
- 183. Pattern Recognition and Clustering MCQs
- 184. Feature Extraction & Selection Concepts and Algorithms MCQs
- 185. Pattern Recognition MCQs
- 186. Understanding Cybercrime Types and Challenges MCQs
- 187. Cybercrime MCQs

- 188. Cyber Crime and Criminal justice MCQs
- 189. Electronic Evidence MCQs
- 190. Ethical Hacking MCQs
- 191. Introduction to Information Security MCQ
- 192. Computer Graphics Multimedia PYQ
- 193. Style sheets MCQs
- 194. Process Control MCQS
- 195. Signals and Systems MCQs
- 196. Understanding AM and FM Transmission Noise and Receiver Characteristics
- 197. Op-Amp Characteristics MCQs
- 198. Digital filters Design Techniques Mcqs
- 199. ERROR CONTROL AND DATA LINK PROTOCOLS mcqs
- 200. Satellite Communication MCQs