- 1. What is the primary difference between contact printing and projection printing in lithography?
- a) Contact printing uses direct physical contact between mask and substrate, while projection printing involves projecting the mask pattern onto the substrate.
- b) Projection printing uses direct physical contact between mask and substrate, while contact printing involves projecting the mask pattern onto the substrate.
- c) Contact printing has higher resolution than projection printing.
- d) Projection printing is only suitable for positive photoresists, while contact printing works with both positive and negative photoresists.

Answer: a) Contact printing uses direct physical contact between mask and substrate, while projection printing involves projecting the mask pattern onto the substrate.

Explanation: Contact printing involves pressing the mask directly onto the substrate, while in projection printing, the mask pattern is projected onto the substrate from a distance.

- 2. Which technique is commonly used to improve resolution in lithography processes?
- a) Proximity printing
- b) Direct writing
- c) Overlay-accuracies
- d) Electron lithography

Answer: d) Electron lithography

Explanation: Electron lithography is a high-resolution technique used to pattern features on substrates with very fine detail, thus improving resolution.

3. What does MEEF stand for in lithography?

- a) Maximum Electrical Efficiency Factor
- b) Mask-Error Enhancement Factor
- c) Minimum Exposure Efficiency Factor
- d) Massively Effective Energy Flux

Answer: b) Mask-Error Enhancement Factor

Explanation: MEEF measures the sensitivity of printed features to variations or errors in the

photomask.

- 4. Which type of photoresist is sensitive to UV light and becomes soluble upon exposure?
- a) Positive photoresist
- b) Negative photoresist
- c) Electron resist
- d) X-ray resist

Answer: a) Positive photoresist

Explanation: Positive photoresists become more soluble upon exposure to UV light, allowing for selective development of the exposed regions.

- 5. What is the main advantage of electron lithography over optical lithography?
- a) Higher throughput
- b) Lower cost
- c) Better resolution
- d) Compatibility with a wider range of photoresists

Answer: c) Better resolution

Explanation: Electron lithography can achieve much finer resolutions compared to optical lithography due to the shorter wavelength of electrons.

- 6. Which lithography technique involves directly writing the pattern onto the substrate using a focused beam of electrons or ions?
- a) Projection printing
- b) Contact printing
- c) Direct writing
- d) Proximity printing

Answer: c) Direct writing

Explanation: Direct writing involves directly patterning the substrate using a focused beam of electrons or ions without the use of a mask.

- 7. In lithography, what term refers to the ability to precisely align multiple layers of patterns on a substrate?
- a) Resolution enhancement
- b) Overlay-accuracies
- c) Mask-Error Enhancement Factor
- d) Proximity printing

Answer: b) Overlay-accuracies

Explanation: Overlay-accuracies refer to the precision in aligning different layers of patterns on a substrate during lithography processes.

8. Which type of photoresist becomes insoluble upon exposure to light?

- a) Positive photoresist
- b) Negative photoresist
- c) Electron resist
- d) X-ray resist

Answer: b) Negative photoresist

Explanation: Negative photoresists become insoluble upon exposure to light, allowing for selective development of the unexposed regions.

- 9. Which lithography technique uses a mask to project the pattern onto the substrate at a distance?
- a) Contact printing
- b) Electron lithography
- c) Projection printing
- d) Direct writing

Answer: c) Projection printing

Explanation: Projection printing involves using a mask to project the pattern onto the substrate at a distance, without direct physical contact.

- 10. What type of resist is commonly used in electron beam lithography due to its high sensitivity to electron beams?
- a) Positive photoresist
- b) Negative photoresist
- c) Electron resist
- d) X-ray resist

Answer: c) Electron resist

Explanation: Electron resist is specifically designed to be highly sensitive to electron beams,

making it suitable for electron beam lithography processes.