- 1. Which of the following is a key necessity of inventory in process management?
- a) Minimizing cycle time
- b) Maximizing excess inventory
- c) Reducing safety stock levels
- d) Ignoring deterministic demand

Answer: a) Minimizing cycle time

Explanation: Inventory in process management aims to minimize cycle time by ensuring smooth flow and reducing idle time in production processes.

- 2. What problem is associated with excessive inventory in supply chain management?
- a) Increased cycle time
- b) Decreased holding costs
- c) Enhanced production flexibility
- d) Risk of obsolescence and wastage

Answer: d) Risk of obsolescence and wastage

Explanation: Excessive inventory leads to higher holding costs and increases the risk of products becoming obsolete or wasted.

- 3. The Classical Economic Order Quantity (EOQ) model is primarily concerned with:
- a) Minimizing inventory holding costs
- b) Maximizing order frequency
- c) Ignoring demand variability
- d) Overestimating safety stock levels

Answer: a) Minimizing inventory holding costs

Explanation: The EOQ model calculates the optimal order quantity that minimizes the total inventory holding costs.

- 4. Which analysis technique categorizes items based on their relative importance to inventory management?
- a) VED analysis
- b) MRP analysis
- c) Cycle counting analysis
- d) Economic batch quantity analysis

Answer: a) VED analysis

Explanation: VED analysis categorizes items as vital, essential, and desirable based on their importance for inventory management.

- 5. Lot sizing in Material Requirements Planning (MRP) is concerned with:
- a) Minimizing production costs
- b) Maximizing order frequency
- c) Determining the optimal batch size
- d) Reducing lead times

Answer: c) Determining the optimal batch size

Explanation: Lot sizing in MRP involves determining the most efficient batch size for ordering materials to meet production requirements while minimizing costs.

6. What is the primary objective of Just-in-Time (JIT) manufacturing?

- a) Maximizing inventory levels
- b) Minimizing production flexibility
- c) Reducing waste and lead times
- d) Ignoring supplier relationships

Answer: c) Reducing waste and lead times

Explanation: JIT manufacturing aims to eliminate waste, minimize lead times, and improve efficiency by producing only what is needed, when it is needed.

- 7. How does the evolution from MRP to ERP enhance supply chain management?
- a) By focusing solely on production processes
- b) By integrating various business functions
- c) By reducing the need for inventory management
- d) By ignoring technological advancements

Answer: b) By integrating various business functions

Explanation: ERP systems integrate various business functions, including inventory management, finance, human resources, and customer relationship management, to improve overall supply chain management.

- 8. ABC analysis classifies inventory items based on:
- a) Shelf life
- b) Movement frequency
- c) Size and weight
- d) Demand variability

Answer: b) Movement frequency

Explanation: ABC analysis categorizes inventory items based on their movement frequency, with category A representing high-value items with frequent movement, category B representing moderate-value items with moderate movement, and category C representing low-value items with infrequent movement.

- 9. How does linking MRP with JIT benefit manufacturing operations?
- a) By increasing inventory levels
- b) By reducing production lead times
- c) By ignoring production scheduling
- d) By maximizing batch sizes

Answer: b) By reducing production lead times

Explanation: Linking MRP with JIT helps to synchronize production schedules with demand, reducing lead times and improving overall efficiency.

- 10. What role does e-business play in modern supply chain management?
- a) Reducing reliance on technology
- b) Limiting communication with suppliers
- c) Enhancing visibility and collaboration
- d) Ignoring customer demands

Answer: c) Enhancing visibility and collaboration

Explanation: E-business facilitates real-time communication, collaboration, and visibility among supply chain partners, leading to improved efficiency and responsiveness to customer demands.

Related posts:

- 1. Introduction of IC Engine MCQs
- 2. Combustion in SI engines MCQs
- 3. Combustion in CI Engines MCQs
- 4. Fuel MCQs
- Supercharging & Turbo charging MCQs
- 6. Fundamental Aspects of Vibrations MCQs
- 7. Damped Free Vibrations: Viscous damping MCQs
- 8. Harmonically excited Vibration MCQS
- 9. Systems With Two Degrees of Freedom MCQs
- 10. Noise Engineering Subjective response of sound MCQs
- 11. Mechatronics Overview and Applications MCQs
- 12. REVIEW OF TRANSDUCERS AND SENSORS MCQs
- 13. MICROPROCESSOR ARCHITECTURE MCQs
- 14. Electrical and Hydraulic Actuators MCQs
- 15. SINGLE CONDITIONING MCQs
- 16. Dynamics of Engine Mechanisms MCQs
- 17. Governor Mechanisms MCQs
- 18. Balancing of Inertia Forces and Moments in Machines MCQs
- 19. Friction MCQs
- 20. Brakes MCQs
- 21. Introduction Automobile Fuels MCQs
- 22. Liquid alternative fuels MCQs
- 23. Gaseous Fuels MCQs
- 24. Automobile emissions MCQS
- 25. Emissions Norms & Measurement MCQs

- 26. Method study MCQs
- 27. Work measuremen MCQs
- 28. Job Contribution Evaluation MCQs
- 29. Human factor engineering MCQs
- 30. Display systems and anthropometric datA MCQs
- 31. Quality Management MCQs
- 32. Quality Management process MCQs
- 33. SQC-Control charts MCQs
- 34. Process diagnostics MCQs
- 35. Process improvement MCQs
- 36. Finite Element Method MCOs
- 37. Element Types and Characteristics MCQs
- 38. Assembly of Elements and Matrices MCQs
- 39. Higher Order and Isoparametric Elements MCQs
- 40. Static & Dynamic Analysis MCQs
- 41. Refrigeration & Cooling MCQs
- 42. Vapour compression system MCQs
- 43. Vapour absorption system MCQs
- 44. Psychometric MCQs
- 45. Air conditioning MCQS
- 46. Chassis & Body Engg MCQs
- 47. Steering System MCQs
- 48. Transmission System MCQs
- 49. Suspension system MCQs
- 50. Electrical and Control Systems MCQS
- 51. Emission standards and pollution control MCQs
- 52. Tribology and Surface Mechanics MCQs

- 53. Friction MCQs: Concepts and Analysis
- 54. Understanding Wear Mechanisms MCQs
- 55. Lubricants and Lubrication Standards MCQS
- 56. Nano Tribology MCQs
- 57. Machine Tools MCQs
- 58. Regulation of Speed MCQs
- 59. Design of Metal working Tools MCQs
- 60. Design of Jigs and Fixtures MCQs
- 61. Design of Gauges and Inspection Features MCQs
- 62. Production Systems MCQs
- 63. Work Study MCQs
- 64. Production Planning MCQs
- 65. Production and Inventory Control MCQs
- 66. Productivity MCQs
- 67. DESCRIPTIVE STATISTICS MCQs
- 68. INTRODUCTION TO BIG DATA MCQs
- 69. BIG DATA TECHNOLOGIES MCQs
- 70. Energy Management MCQs
- 71. Energy Audit MCQs
- 72. Material energy balance MCQs
- 73. Monitoring and Targeting MCQs
- 74. Thermal energy management MCQs
- 75. System Concepts MCQs
- 76. Management MCQs
- 77. Marketing MCqs
- 78. Productivity and Operations MCQs
- 79. Entrepreneurship MCQs

- 80. Introduction of MIS MCQs
- 81. Information systems for decision-making MCgs
- 82. System Design Quiz MCQs
- 83. Implementation, Evaluation and Maintenance of the MIS MCQs
- 84. Pitfalls in MIS Development MCQs
- 85. Steam generators and boilers MCQs
- 86. Vapour Cycles MCQs
- 87. Gas Dynamics MCQs
- 88. Air Compressors MCQs
- 89. Nozzles and Condensers MCQs
- 90. Introduction to stress in machine component MCQs
- 91. Shafts MCQS
- 92. Springs MCQs
- 93. Brakes & Clutches MCQs
- 94. Journal Bearing MCQs
- 95. Energy transfer in turbo machines MCQs
- 96. Steam turbines MCQs
- 97. Water turbines MCOs
- 98. Rotary Fans, Blowers and Compressors MCQs
- 99. Power transmitting turbo machines MCQs
- 100. Energy transfer in turbo machines MCQs
- 101. Steam turbines MCQs
- 102. Water turbines MCQS
- 103. Rotary Fans, Blowers and Compressors MCQs
- 104. Power transmitting turbo machines MCQs
- 105. Introduction to Computer Engineering MCQs
- 106. Types of Analysis MCQS

- 107. Heat Transfer and Conduction MCQs
- 108. Extended Surfaces (fins) MCQs
- 109. Convection MCQs
- 110. Thermal and Mass Transfer MCQs
- 111. Thermal Radiation & Boiling/Condensation MCQs
- 112. Mechanical processes MCQs
- 113. Electrochemical and chemical metal removal processes MCQs
- 114. Thermal metal removal processes MCQs
- 115. Rapid prototyping fabrication methods MCQs
- 116. Technologies of micro fabrication MCQs
- 117. Power Plant Engineering MCQs
- 118. Fossil fuel steam stations MCQs
- 119. Nuclear Power Station MCQs
- 120. Hydro-Power Station MCQs
- 121. Power Station Economics MCQs
- 122. Design of Belt, Rope and Chain Drives MCQS
- 123. Spur and Helical Gears MCQs
- 124. Bevel Gears MCQs
- 125. Design of I.C. Engine Components MCQs
- 126. Linear system and distribution models MCQs
- 127. Supply chain (SCM) MCQs
- 128. Queueing Theory & Game Theory MCQs
- 129. Project Management & Meta-heuristics MCQs
- 130. Overview of Systems Engineering MCQS
- 131. Structure of Complex Systems MCQs
- 132. Concept Development and Exploration MCQs
- 133. Engineering Development MCQs

- 134. Basic Concepts & Laws of Thermodynamics MCQs
- 135. Properties of Steam MCQs
- 136. Air standard cycles MCQS
- 137. Fuels & combustion MCQs
- 138. Materials Science MCQs
- 139. Alloys and Materials MCQs
- 140. Metal Heat Treatment MCQs
- 141. Material Testing and Properties MCQs
- 142. Chemical Analysis of Metal Alloys MCQs
- 143. Stress and strain MCQs
- 144. Bending MCQs
- 145. Torsion in shafts MCQs
- 146. Theories of failures MCQs
- 147. Columns & struts MCQs
- 148. Manufacturing Process MCQs