- 1. What is the primary function of a sensor in an IoT system?
- a) To process data
- b) To actuate
- c) To sense and collect data
- d) To communicate wirelessly

Answer: c) To sense and collect data

Explanation: Sensors in IoT systems detect and gather information from the physical environment, such as temperature, humidity, or motion, and convert it into a measurable form for further processing.

- 2. What does Participatory Sensing primarily involve?
- a) Centralized data collection
- b) Sensor calibration
- c) Crowd-sourced data gathering
- d) Machine learning algorithms

Answer: c) Crowd-sourced data gathering

Explanation: Participatory sensing engages the general public to contribute data using their personal devices, enabling large-scale data collection across various locations.

- 3. Which of the following is a common application of Industrial IoT (IIoT)?
- a) Home automation
- b) Personal fitness tracking
- c) Smart agriculture
- d) Factory automation

Answer: d) Factory automation

Explanation: IIoT involves the use of IoT technologies in industrial settings, such as manufacturing plants, to enhance efficiency, productivity, and safety through automation and data exchange.

- 4. What is the main purpose of an actuator in IoT systems?
- a) To sense environmental data
- b) To process data
- c) To communicate wirelessly
- d) To perform physical actions based on data

Answer: d) To perform physical actions based on data

Explanation: Actuators translate digital signals from IoT systems into physical actions, such as opening a valve or turning on a motor, based on the processed data from sensors.

- 5. Which protocol is commonly used for communication between sensors and IoT devices?
- a) HTTP
- b) MQTT
- c) TCP/IP
- d) SMTP

Answer: b) MQTT

Explanation: MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol commonly used in IoT applications for efficient communication between sensors and devices, especially in low-bandwidth or unreliable networks.

6. What technology is often utilized for asset tracking in supply chain management?

- a) GPS
- b) NFC
- c) RFID
- d) Bluetooth

Answer: c) RFID

Explanation: Radio Frequency Identification (RFID) technology is commonly used for tracking and identifying assets in supply chain management, allowing for real-time monitoring of inventory and logistics.

- 7. Which type of network is typically employed for connecting distributed sensors in IoT applications?
- a) Local Area Network (LAN)
- b) Personal Area Network (PAN)
- c) Wireless Sensor Network (WSN)
- d) Metropolitan Area Network (MAN)

Answer: c) Wireless Sensor Network (WSN)

Explanation: WSNs consist of distributed sensors wirelessly interconnected to monitor physical or environmental conditions, making them suitable for IoT applications where wired connections are impractical or costly.

- 8. What is a key advantage of using RFID technology for inventory management?
- a) High data transfer rate
- b) Long battery life
- c) Contactless operation
- d) Wide coverage area

Answer: c) Contactless operation

Explanation: RFID technology enables contactless identification and tracking of items, improving efficiency and reducing human error in inventory management processes.

- 9. Which frequency band is commonly used for communication in Wireless Sensor Networks (WSNs)?
- a) 2.4 GHz
- b) 5 GHz
- c) 900 MHz
- d) 60 GHz

Answer: c) 900 MHz

Explanation: The 900 MHz frequency band is commonly utilized in WSNs due to its ability to penetrate obstacles and cover long distances, making it suitable for low-power, wide-area sensor deployments.

- 10. What is the primary advantage of using Wireless Sensor Network (WSN) technology in environmental monitoring?
- a) High data transfer rate
- b) Low cost
- c) Limited coverage area
- d) Dependence on wired infrastructure

Answer: b) Low cost

Explanation: WSN technology offers cost-effective solutions for environmental monitoring by eliminating the need for extensive wired infrastructure and allowing for scalable deployment of sensor nodes over large areas.

IoT Technologies MCQS