Knapsack Problem Solved by dynamic programming

Define how Knapsack Problem is Solved by dynamic programming.
Consider $n=3\left(w, w, w_{1}\right)=(2,3,3),\left(P, P_{2}, P_{2}\right)=(1,2,4)$ and 6 . Find optimal solution.
$\mathrm{n}=3$ (number of items)
$w_{1}=2, w_{2}=3, w_{3}=3$ (weights of the items)
$P_{1}=1, P_{2}=2, P_{3}=4$ (values of the items)
$\mathrm{W}=6$ (maximum weight capacity)

Step 01:

Create table.

Step 02:

Fill in the table:
For item $1\left(w_{1}=2, P_{1}=1\right)$:

Knapsack Problem Solved by dynamic programming

Step 03:

For item 2
$\left(\mathrm{w}_{2}=3, \mathrm{P}_{2}=2\right):$

Step 04:

For item 3
$\left(w_{3}=3, P_{3}=4\right):$

Knapsack Problem Solved by dynamic programming

The optimal solution is the value in the bottom-right corner of the table, which is $\mathrm{dp}[3][6]=$ 6 . Therefore, the maximum value that can be achieved without exceeding the weight capacity of 6 is 6 .

