#1. In reinforcement learning, what is the role of the exploration-exploitation
tradeoff?
Balancing between trying out new actions and exploiting known high-reward actions
Balancing between the number of features and the number of samples
Balancing between training time and testing time
Palancing between underfitting and everfitting
Balancing between underfitting and overfitting
Balancing between model complexity and the amount of training data
#2. Which algorithm is commonly used for sentiment analysis in natural language
processing (NLP)?
Long Short-Term Memory (LSTM)
Naive Bayes
Logistic Regression
Support Vector Machines (SVM)
Random Forest
Random Forest #3. What is the purpose of early stopping in neural network training?

To increase model complexity
To speed up the training process
To add noise to the data
To improve the interpretability of the model
#4. Which technique is used for reducing the dimensionality of high-dimensional
data while preserving as much information as possible?
t-SNE (t-Distributed Stochastic Neighbor Embedding)
Random Projection
Singular Value Decomposition (SVD)
Apriori algorithm
K-Means Clustering
#5. What is the main purpose of a Recurrent Neural Network (RNN) in deep
learning?
Handling sequential or time-series data
Performing image classification
Reducing model complexity
Increasing the learning rate

PCA
Linear Regression
Logistic Regression
#9. What is the main objective of the Mean-Shift clustering algorithm?
Identifying dense regions of data points in feature space $\hfill\Box$
Reducing model complexity
Performing image segmentation
Classifying data into predefined categories
Increasing the learning rate
#10. What is the purpose of a loss function in machine learning?
Quantifying the error between predicted and actual values
Determining the number of hidden layers in a neural network
Controlling the number of features in a dataset
Adding non-linearity to the model
Speeding up the training process
#11. In reinforcement learning, what is the role of the discount factor (gamma)?

Balancing immediate rewards against future rewards
Controlling the exploration rate
Deducing weedel complexity.
Reducing model complexity
Controlling the learning rate
Controlling the learning rate
Controlling the number of episodes in training
#12. Which method is commonly used for imbalanced classification tasks?
"12. Which inclined is commonly used for imbalanced classification tasks."
Resampling (e.g., oversampling or undersampling)
Bagging
Feature selection
Dringing Component Analysis (DCA)
Principal Component Analysis (PCA)
Random Projection
#13. What is the purpose of the Kullback-Leibler (KL) divergence in information
theory?
theory:
Measuring the difference between two probability distributions
Classifying data into predefined categories
Speeding up the training process
Deducing madel complexity.
Reducing model complexity

Adding residents the date
Adding noise to the data
#14. Which algorithm is commonly used for face recognition in computer vision applications?
Eigenfaces (PCA-based)
Random Forest
Logistic Regression
K-Nearest Neighbors (KNN)
Naive Bayes
#15. What is the role of the latent space in generative models like Variational
Autoencoders (VAEs)?
Encoding and decoding high-dimensional data into a lower-dimensional representation
Controlling the learning rate
Reducing model complexity
Adding non-linearity to the model
Performing image classification
#16. Which algorithm is commonly used for outlier detection based on distance
measures?
Mahalanobis Distance

Random Forest
Logistic Regression
K-Means Clustering
Maive Payer
Naive Bayes #17. What is the nurness of the term "memortum" in gradient descent
#17. What is the purpose of the term "momentum" in gradient descent optimization?
To help accelerate convergence and escape local minima
To reduce the learning rate
To add noise to the data
To increase the number of features
To regularize the model
#18. Which technique is used for feature extraction in natural language processing
(NLP)?
Word Embeddings (e.g., Word2Vec, GloVe)
Principal Component Analysis (PCA)
Support Vector Machines (SVM)
K-Means Clustering

□ Decision Trees #19. What is the main purpose of a Recurrent Neural Network (RNN) in deep learning?
Handling sequential or time-series data
Performing image classification
Reducing model complexity
Increasing the learning rate
Adding non-linearity to the model
#20. In reinforcement learning, what is the role of the exploration-exploitation tradeoff?
Balancing between trying out new actions and exploiting known high-reward actions $\hfill\Box$
Balancing between the number of features and the number of samples $\hfill\Box$
Balancing between training time and testing time $\hfill\Box$
Balancing between underfitting and overfitting
Balancing between model complexity and the amount of training data
Next
Results

