- 1. What memory management technique involves dividing the main memory into fixed-size partitions to accommodate multiple processes?
- a) Swapping
- b) Segmentation
- c) Partitioning
- d) Paging

Answer: c) Partitioning

Explanation: Partitioning involves dividing the main memory into fixed-size partitions, each assigned to a different process. This allows multiple processes to run concurrently without interfering with each other.

- 2. Which memory management technique involves moving entire processes between main memory and disk?
- a) Segmentation
- b) Swapping
- c) Paging
- d) Paged Segmentation

Answer: b) Swapping

Explanation: Swapping involves moving entire processes between main memory and disk,

typically to free up space in memory for other processes.
3. Which memory management technique uses logical division of memory into segments of variable sizes?
a) Paging
b) Partitioning
c) Segmentation
d) Paged Segmentation
Answer: c) Segmentation
Explanation: Segmentation divides memory into segments of variable sizes based on logical structure, such as code, data, and stack segments.
4. Which memory management technique involves breaking down processes into fixed-size blocks called pages?
a) Segmentation
b) Swapping
c) Paging
d) Partitioning

Answer:	c)	Paging
/ \lijvvci.	\sim	i agiiig

Explanation: Paging involves dividing processes into fixed-size blocks called pages, allowing for efficient allocation of memory.

- 5. What memory management technique combines features of both segmentation and paging?
- a) Partitioning
- b) Paged Segmentation
- c) Swapping
- d) Overlay

Answer: b) Paged Segmentation

Explanation: Paged Segmentation combines features of both segmentation and paging, providing benefits of both techniques.

- 6. Which technique allows execution of large programs by dividing them into smaller modules loaded into memory only when needed?
- a) Swapping

- b) Overlay
- c) Dynamic Linking and Loading
- d) Partitioning

Answer: b) Overlay

Explanation: Overlay allows execution of large programs by dividing them into smaller modules loaded into memory only when needed, conserving memory space.

- 7. What technique involves linking libraries dynamically during program execution rather than at compile time?
- a) Swapping
- b) Overlay
- c) Dynamic Linking and Loading
- d) Paging

Answer: c) Dynamic Linking and Loading

Explanation: Dynamic Linking and Loading links libraries dynamically during program execution, allowing for flexibility and efficient memory usage.

- 8. What is the fundamental concept behind virtual memory?
- a) Physical separation of memory
- b) Logical separation of memory
- c) Dynamic allocation of memory
- d) Fixed-size allocation of memory

Answer: b) Logical separation of memory

Explanation: Virtual memory provides a logical separation of memory, allowing processes to operate as if they have access to a large, contiguous block of memory.

- 9. Which technique involves loading pages into memory only when needed during program execution?
- a) Demand Paging
- b) Swapping
- c) Paging
- d) Segmentation

Answer: a) Demand Paging

Explanation: Demand Paging loads pages into memory only when needed during program
execution, reducing the initial memory footprint of processes.

- 10. What is the primary advantage of partitioning in memory management?
- a) Efficient use of memory
- b) Easy implementation
- c) Fast access to processes
- d) Elimination of fragmentation

Answer: a) Efficient use of memory

Explanation: Partitioning allows for efficient use of memory by allocating fixed-size partitions to different processes, maximizing memory utilization.

- 11. Which memory management technique suffers from external fragmentation?
- a) Segmentation
- b) Paging
- c) Swapping
- d) Partitioning

Answer: d) Partitioning

Explanation: Partitioning can suffer from external fragmentation, where free memory is fragmented into small blocks but cannot be utilized due to being too small for a process.

- 12. Which technique allows multiple processes to share the same memory space without interfering with each other?
- a) Paging
- b) Partitioning
- c) Swapping
- d) Segmentation

Answer: a) Paging

Explanation: Paging allows multiple processes to share the same memory space without interference by mapping their pages to physical memory in a controlled manner.

- 13. Which memory management technique allows for efficient allocation of memory by dividing processes into equal-sized blocks?
- a) Swapping

memory	and	disk t	to ha	lance	system	load?
illelliol y	anu	UISK I	LU Da	iance	System	ioau:

- a) Paging
- b) Partitioning
- c) Swapping
- d) Segmentation

Answer: c) Swapping

Explanation: Swapping involves moving processes between main memory and disk to balance system load and manage memory resources effectively.

- 16. What is the primary disadvantage of using dynamic linking and loading?
- a) Increased memory overhead
- b) Limited flexibility
- c) Slower program execution
- d) Difficulty in debugging

Answer: a) Increased memory overhead

Explanation: Dynamic linking and loading can lead to increased memory overhead due to the need to load additional libraries dynamically during program execution.

- 17. Which technique aims to reduce the initial loading time of large programs by loading only necessary portions into memory initially?
- a) Overlay
- b) Demand Paging
- c) Swapping
- d) Partitioning

Answer: b) Demand Paging

Explanation: Demand Paging reduces the initial loading time of large programs by loading only necessary portions into memory initially, postponing the loading of other parts until needed.

- 18. What is the key benefit of using virtual memory?
- a) Increased physical memory size
- b) Elimination of memory fragmentation
- c) Efficient utilization of memory
- d) Faster program execution

Answer: c) Efficient utilization of memory

Explanation: Virtual memory allows for efficient utilization of memory by providing a logical abstraction of memory, enabling processes to access a larger address space than physical memory.

- 19. Which memory management technique involves dividing memory into variable-sized partitions based on program requirements?
- a) Paging
- b) Segmentation
- c) Swapping
- d) Partitioning

Answer: b) Segmentation

Explanation: Segmentation divides memory into variable-sized partitions based on program requirements, providing flexibility in memory allocation.

- 20. What is a drawback of using overlays in memory management?
- a) Increased memory utilization
- b) Difficulty in program execution
- c) Limited program size

d) Higher memory access latency
Answer: c) Limited program size
Explanation: Overlays limit the program size as only portions of the program can be loaded into memory at a time, requiring careful management of memory usage.
21. Which technique involves breaking down programs into smaller, more manageable units to facilitate execution?
a) Paging
b) Segmentation
c) Partitioning
d) Overlay
Answer: d) Overlay
Explanation: Overlay involves breaking down programs into smaller, more manageable units
to facilitate execution, conserving memory space by loading only necessary modules into
memory.

22. In which memory management technique is the physical memory space divided into

fixed-size blo	cks?
----------------	------

- a) Segmentation
- b) Swapping
- c) Paging
- d) Partitioning

Answer: c) Paging

Explanation: Paging divides physical memory into fixed-size blocks called pages, simplifying memory management and allocation.

- 23. What is the primary purpose of partitioning in memory management?
- a) To reduce memory fragmentation
- b) To increase memory access speed
- c) To enable sharing of memory among processes
- d) To allocate memory efficiently

Answer: d) To allocate memory efficiently

Explanation: Partitioning divides memory into fixed-size partitions to allocate memory efficiently among processes, maximizing memory utilization.

24. '	Which m	emory	mana 🤈	gement	techniq	ue involve:	s moving	parts	of a	process	between	main
men	nory and	disk k	oased o	n their	usage?							

- a) Paging
- b) Swapping
- c) Segmentation
- d) Partitioning

Answer: a) Paging

Explanation: Paging involves moving parts of a process between main memory and disk based on their usage, optimizing memory usage and access speed.

- 25. What is the main disadvantage of using paging in memory management?
- a) Increased memory overhead
- b) Complexity in implementation
- c) Fragmentation of memory
- d) Limited address space

Answer: a) Increased memory overhead

Explanation: Paging can lead to increased memory overhead due to the need to manage and track page tables, which can consume additional memory resources.

- 26. Which technique involves breaking down programs into smaller modules that are loaded into memory as needed?
- a) Overlay
- b) Swapping
- c) Partitioning
- d) Dynamic Linking and Loading

Answer: a) Overlay

Explanation: Overlay involves breaking down programs into smaller modules that are loaded into memory as needed, conserving memory space and improving efficiency.

- 27. Which memory management technique requires constant monitoring and adjustment of memory allocation to maintain system performance?
- a) Partitioning
- b) Swapping
- c) Segmentation

d١	Paging
u,	i agiiig

Answer: b) Swapping

Explanation: Swapping requires constant monitoring and adjustment of memory allocation to maintain system performance, as processes are moved between main memory and disk.

- 28. What is a limitation of using segmentation in memory management?
- a) Increased memory fragmentation
- b) Inefficient memory allocation
- c) Limited address space
- d) Complexity in implementation

Answer: a) Increased memory fragmentation

Explanation: Segmentation can lead to increased memory fragmentation, where free memory is divided into small, non-contiguous blocks, reducing memory utilization efficiency.

29. Which technique involves storing frequently accessed data in a special area of memory for faster access?

- a) Paging
- b) Caching
- c) Swapping
- d) Partitioning

Answer: b) Caching

Explanation: Caching involves storing frequently accessed data in a special area of memory called cache, improving access speed and system performance.

- 30. What is the primary goal of demand paging in memory management?
- a) To reduce memory fragmentation
- b) To increase memory access speed
- c) To improve memory utilization
- d) To eliminate the need for swapping

Answer: c) To improve memory utilization

Explanation: Demand paging aims to improve memory utilization by loading only necessary pages into memory, reducing the initial memory footprint of processes.

Related posts:

1. Introduction to Operating Systems MCQ

- 2. File Systems MCQ
- 3. CPU Scheduling MCQ
- 4. Input / Output MCQ
- 5. Operating Systems and Concurrency
- 6. Introduction to Energy Science MCQ
- 7. Ecosystems MCQ
- 8. Biodiversity and its conservation MCQ
- 9. Environmental Pollution mcg
- 10. Social Issues and the Environment MCQ
- 11. Field work mcq
- 12. Discrete Structure MCQ
- 13. Set Theory, Relation, and Function MCQ
- 14. Propositional Logic and Finite State Machines MCQ
- 15. Graph Theory and Combinatorics MCQ
- 16. Relational algebra, Functions and graph theory MCQ
- 17. Data Structure MCQ
- 18. Stacks MCQ
- 19. TREE MCQ
- 20. Graphs MCQ
- 21. Sorting MCQ
- 22. Digital Systems MCQ
- 23. Combinational Logic MCQ
- 24. Sequential logic MCQ
- 25. Analog/Digital Conversion, Logic Gates, Multivibrators, and IC 555 MCQ
- 26. Introduction to Digital Communication MCQ
- 27. Introduction to Object Oriented Thinking & Object Oriented Programming MCQ
- 28. Encapsulation and Data Abstraction MCQ

- 29. MCO
- 30. Relationships Inheritance MCQ
- 31. Polymorphism MCQ
- 32. Library Management System MCQ
- 33. Numerical Methods MCQ
- 34. Transform Calculus MCQ
- 35. Concept of Probability MCQ
- 36. Algorithms, Designing MCQ
- 37. Study of Greedy strategy MCQ
- 38. Concept of dynamic programming MCQ
- 39. Algorithmic Problem MCQ
- 40. Trees, Graphs, and NP-Completeness MCQ
- 41. The Software Product and Software Process MCQ
- 42. Software Design MCQ
- 43. Software Analysis and Testing MCQ
- 44. Software Maintenance & Software Project Measurement MCQ
- 45. Computer Architecture, Design, and Memory Technologies MCQ
- 46. Basic Structure of Computer MCQ
- 47. Computer Arithmetic MCQ
- 48. I/O Organization MCQ
- 49. Memory Organization MCQ
- 50. Multiprocessors MCQ
- 51. Software Development and Architecture MCQ
- 52. Software architecture models MCQ
- 53. Software architecture implementation technologies MCQ
- 54. Software Architecture analysis and design MCQ
- 55. Software Architecture documentation MCQ

- 56. Introduction to Computational Intelligence MCQ
- 57. Fuzzy Systems MCQ
- 58. Genetic Algorithms MCQ
- 59. Rough Set Theory MCQ
- 60. Introduction to Swarm Intelligence, Swarm Intelligence Techniques MCQ
- 61. Neural Network History and Architectures MCQ
- 62. Autoencoder MCQ
- 63. Deep Learning MCQs
- 64. RL & Bandit Algorithms MCQs
- 65. RL Techniques MCQs
- 66. Review of traditional networks MCQ
- 67. Study of traditional routing and transport MCQ
- 68. Wireless LAN MCQ
- 69. Mobile transport layer MCQ
- 70. Big Data MCQ
- 71. Hadoop and Related Concepts MCQ
- 72. Hive, Pig, and ETL Processing MCQ
- 73. NoSQL MCQs Concepts, Variations, and MongoDB
- 74. Mining social Network Graphs MCQ
- 75. Mathematical Background for Cryptography MCQ
- 76. Cryptography MCQ
- 77. Cryptographic MCQs
- 78. Information Security MCQ
- 79. Cryptography and Information Security Tools MCQ
- 80. Data Warehousing MCQ
- 81. OLAP Systems MCQ
- 82. Introduction to Data& Data Mining MCQ

- 83. Supervised Learning MCQ
- 84. Clustering & Association Rule mining MCQ
- 85. Fundamentals of Agile Process MCQ
- 86. Agile Projects MCQs
- 87. Introduction to Scrum MCQs
- 88. Introduction to Extreme Programming (XP) MCQs
- 89. Agile Software Design and Development MCQs
- 90. Machine Learning Fundamentals MCQs
- 91. Neural Network MCQs
- 92. CNNs MCQ
- 93. Reinforcement Learning and Sequential Models MCQs
- 94. Machine Learning in ImageNet Competition mcq
- 95. Computer Network MCQ
- 96. Data Link Layer MCQ
- 97. MAC Sub layer MCQ
- 98. Network Layer MCQ
- 99. Transport Layer MCQ
- 100. Raster Scan Displays MCQs
- 101. 3-D Transformations MCQs
- 102. Visualization MCQ
- 103. Multimedia MCQs
- 104. Introduction to compiling & Lexical Analysis MCQs
- 105. Syntax Analysis & Syntax Directed Translation MCQs
- 106. Type Checking & Run Time Environment MCQs
- 107. Code Generation MCQs
- 108. Code Optimization MCQs
- 109. INTRODUCTION Knowledge Management MCQs

- 110. Organization and Knowledge Management MCQs
- 111. Telecommunications and Networks in Knowledge Management MCQs
- 112. Components of a Knowledge Strategy MCQs
- 113. Advanced topics and case studies in knowledge management MCQs
- 114. Conventional Software Management MCQs
- 115. Software Management Process MCQs
- 116. Software Management Disciplines MCQs
- 117. Rural Management MCQs
- 118. Human Resource Management for rural India MCQs
- 119. Management of Rural Financing MCQs
- 120. Research Methodology MCQs
- 121. Research Methodology MCQs
- 122. IoT MCQs
- 123. Sensors and Actuators MCQs
- 124. IoT MCQs: Basics, Components, Protocols, and Applications
- 125. MCQs on IoT Protocols
- 126. IoT MCQs
- 127. INTRODUCTION Block Chain Technologies MCQs
- 128. Understanding Block chain with Crypto currency MCQs
- 129. Understanding Block chain for Enterprises MCQs
- 130. Enterprise application of Block chain MCQs
- 131. Block chain application development MCQs
- 132. MCQs on Service Oriented Architecture, Web Services, and Cloud Computing
- 133. Utility Computing, Elastic Computing, Ajax MCQs
- 134. Data in the cloud MCOs
- 135. Cloud Security MCQs
- 136. Issues in cloud computinG MCQs

- 137. Introduction to modern processors MCQs
- 138. Data access optimizations MCQs
- 139. Parallel Computing MCQs
- 140. Efficient Open MP Programming MCQs
- 141. Distributed Memory parallel programming with MPI MCQs
- 142. Review of Object Oriented Concepts and Principles MCQs.
- 143. Introduction to RUP MCOs.
- 144. UML and OO Analysis MCQs
- 145. Object Oriented Design MCQs
- 146. Object Oriented Testing MCQs
- 147. CVIP Basics MCQs
- 148. Image Representation and Description MCQs
- 149. Region Analysis MCQs
- 150. Facet Model Recognition MCQs
- 151. Knowledge Based Vision MCQs
- 152. Game Design and Semiotics MCQs
- 153. Systems and Interactivity Understanding Choices and Dynamics MCQs
- 154. Game Rules Overview Concepts and Case Studies MCQs
- 155. IoT Essentials MCQs
- 156. Sensor and Actuator MCQs
- 157. IoT Networking & Technologies MCQs
- 158. MQTT, CoAP, XMPP, AMQP MCQs
- 159. IoT MCQs: Platforms, Security, and Case Studies
- 160. MCQs on Innovation and Entrepreneurship
- 161. Innovation Management MCQs
- 162. Stage Gate Method & Open Innovation MCQs
- 163. Innovation in Business: MCQs

- 164. Automata Theory MCQs
- 165. Finite Automata MCQs
- 166. Grammars MCQs
- 167. Push down Automata MCQs
- 168. Turing Machine MCQs
- 169. Database Management System (DBMS) MCQs
- 170. Relational Data models MCQs
- 171. Data Base Design MCQs
- 172. Transaction Processing Concepts MCQs
- 173. Control Techniques MCQs
- 174. DBMS Concepts & SQL Essentials MCQs
- 175. DESCRIPTIVE STATISTICS MCQs
- 176. INTRODUCTION TO BIG DATA MCQ
- 177. BIG DATA TECHNOLOGIES MCQs
- 178. PROCESSING BIG DATA MCQs
- 179. HADOOP MAPREDUCE MCQs
- 180. BIG DATA TOOLS AND TECHNIQUES MCQs
- 181. Pattern Recognition MCQs
- 182. Classification Algorithms MCQs
- 183. Pattern Recognition and Clustering MCQs
- 184. Feature Extraction & Selection Concepts and Algorithms MCQs
- 185. Pattern Recognition MCQs
- 186. Understanding Cybercrime Types and Challenges MCQs
- 187. Cybercrime MCQs
- 188. Cyber Crime and Criminal justice MCQs
- 189. Electronic Evidence MCOs
- 190. Satellite Communication MCQs

- 191. ELECTRO PHYSIOLOGICAL MEASUREMENTS mcqs
- 192. DC DC Converters MCQS
- 193. RF Network Analysis & Measurement MCQs
- 194. Nanoscale Semiconductor Physics MCQs
- 195. Types of Noncochannel interference MCQS
- 196. Probability and Random Variable MCQs
- 197. Optical networks and amplifiers MCQS
- 198. Wireless Sensor Networks MCQS
- 199. Speech Processing Fundamentals MCQs
- 200. Signal and Function Generators, Displays MCQS