Introduction

- Logic is the study of reasoning and a core element of Al.
- Monotonic reasoning is a type of reasoning where the addition of new information can only increase the set of conclusions that can be drawn.
- Non-monotonic reasoning is a type of reasoning where the addition of new information can either increase or decrease the set of conclusions.

Monotonic Reasoning

- Example: If we know that "all birds have feathers" and that "Tweety is a bird," then we can conclude that "Tweety has feathers." Even if we add the premise that "Tweety is a penguin," the conclusion that "Tweety has feathers" remains valid.
- In monotonic reasoning, if a conclusion can be drawn from a set of premises, then that conclusion will still be valid even if more premises are added.
- This is a fundamental property of classical logic, including propositional and first-order logic.

Non-monotonic Reasoning

- In non-monotonic reasoning, adding new information can invalidate previously drawn conclusions.
- This type of reasoning is often used in commonsense reasoning, where knowledge is incomplete and subject to change.
- Example: If we know that "birds typically fly" and that "Tweety is a bird," we might conclude that "Tweety can fly." However, if we add the premise that "Tweety is a penguin," we need to retract the conclusion that "Tweety can fly."

Types of Non-monotonic Reasoning

- Default reasoning: This type of reasoning uses default rules or assumptions that are assumed to be true unless there is evidence to the contrary.
- Circumscription: This is a formalism for specifying which predicates are assumed to be false unless they are explicitly stated to be true.
- Closed-world reasoning: This type of reasoning assumes that any fact not explicitly stated in the knowledge base is false.

Applications of Non-monotonic Reasoning

- Commonsense reasoning: Modeling how humans reason about everyday situations.
- Diagnosis: Reasoning about the possible causes of observed symptoms.
- Planning: Reasoning about the effects of actions in incompletely known environments.

Conclusion

- Monotonic and non-monotonic reasoning are fundamental concepts in Al.
- Non-monotonic reasoning is particularly important for modeling human-like commonsense reasoning.
- Understanding these concepts is important for building AI systems that can reason effectively in complex and uncertain environments.

References:

- Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach, 4th Edition, 2020,
 Pearson.
- Rich, E., Knight, K., & Nair, S. B. Artificial Intelligence. McGraw-Hill International.

• Nilsson, N. J. Artificial Intelligence: A New Synthesis. Morgan Kaufmann.

Note: This content was generated with the assistance of Google's Gemini Al.

Related posts:

- 1. Artificial Intelligence Intelligence Tutorial for Beginners
- 2. Difference between Supervised vs Unsupervised vs Reinforcement learning
- 3. What is training data in Machine learning
- 4. What other technologies do I need to master AI?
- 5. How Artificial Intelligence (AI) Impacts Your Daily Life?
- 6. Like machine learning, what are other approaches in Al?
- 7. Best First Search in Al
- 8. Heuristic Search Algorithm
- 9. Hill Climbing in Al
- 10. A* and AO* Search Algorithm
- 11. Knowledge Representation in Al
- 12. Propositional Logic and Predicate Logic
- 13. Resolution and refutation in Al
- 14. Deduction, theorem proving and inferencing in Al
- 15. Probabilistic reasoning in Al
- 16. Bayes' Theorem
- 17. Artificial Intelligence Short exam Notes
- 18. Transformer Architecture in LLM
- 19. Input Embedding in Transformers
- 20. Positional Encoding in Transformers
- 21. Multi-Head Attention in Transformers