- 1. Which network theorem is used to simplify a complex network into an equivalent circuit consisting of a single voltage source and a single series resistance?
- a) Superposition theorem
- b) Thevenin's theorem
- c) Norton's theorem
- d) Reciprocity theorem

Answer: b) Thevenin's theorem

Explanation: Thevenin's theorem states that any linear electrical network with voltage and current sources and resistances can be replaced at terminals A-B by an equivalent voltage source Vth in series with an equivalent resistance Rth.

- 2. Which theorem facilitates the calculation of the maximum power transfer from a source to a load in a network?
- a) Superposition theorem
- b) Maximum Power Transfer theorem
- c) Norton's theorem
- d) Compensation theorem

Answer: b) Maximum Power Transfer theorem

Explanation: The Maximum Power Transfer theorem states that maximum power is

transferred from a source to a load when the load resistance is equal to the internal resistance of the source.

- 3. Tellegen's theorem relates to which aspect of electrical networks?
- a) Superposition
- b) Compensation
- c) Maximum Power Transfer
- d) Energy conservation

Answer: d) Energy conservation

Explanation: Tellegen's theorem is a fundamental principle in electrical network theory that states the algebraic sum of electrical potentials in a network is zero due to energy conservation.

- 4. Which theorem states that the response in any branch of a linear bilateral network due to a single independent source is equal to the response when that independent source is replaced by a short circuit or an open circuit?
- a) Superposition theorem
- b) Reciprocity theorem

- c) Substitution theorem
- d) Compensation theorem

Answer: c) Substitution theorem

Explanation: Substitution theorem states that the response in any branch of a linear bilateral network due to a single independent source is equal to the response when that independent source is replaced by a short circuit or an open circuit.

5. In Millman's theorem, what type of elements are typically found in the branches of the network?

- a) Capacitors
- b) Voltage sources
- c) Inductors
- d) Resistors

Answer: b) Voltage sources

Explanation: Millman's theorem is used to find the voltage across parallel branches of a network where each branch consists of a voltage source in series with a resistor.

| Network Theorems MC | JŲ | )5 |
|---------------------|----|----|
|---------------------|----|----|

- 6. Which theorem allows the simplification of a network containing dependent sources into an equivalent circuit?
- a) Superposition theorem
- b) Compensation theorem
- c) Millman's theorem
- d) Tellegen's theorem

Answer: b) Compensation theorem

Explanation: Compensation theorem facilitates the simplification of a network containing dependent sources into an equivalent circuit by transferring the dependent sources to a load.

- 7. The Norton's theorem is a dual to which theorem?
- a) Superposition theorem
- b) Thevenin's theorem
- c) Compensation theorem
- d) Millman's theorem

Answer: b) Thevenin's theorem

Explanation: Norton's theorem is the dual of Thevenin's theorem, providing an alternative method to simplify complex networks.

- 8. Which theorem is primarily used to analyze circuits with alternating current (AC)?
- a) Norton's theorem
- b) Superposition theorem
- c) Maximum Power Transfer theorem
- d) Tellegen's theorem

Answer: d) Tellegen's theorem

Explanation: Tellegen's theorem is applicable to both DC and AC circuits and is based on the principle of energy conservation.

- 9. What is the primary focus of the Superposition theorem in network analysis?
- a) Finding maximum power transfer
- b) Simplifying complex networks
- c) Analyzing circuits with dependent sources
- d) Evaluating the effect of multiple sources

Answer: d) Evaluating the effect of multiple sources

Explanation: Superposition theorem allows the effects of multiple sources in a network to be analyzed individually by considering one source at a time and summing the results.

- 10. Which theorem is particularly useful for analyzing circuits with dependent sources, such as transistors?
- a) Reciprocity theorem
- b) Millman's theorem
- c) Compensation theorem
- d) Substitution theorem

Answer: c) Compensation theorem

Explanation: Compensation theorem is particularly useful for analyzing circuits with dependent sources by simplifying them into equivalent circuits.