
Omega notation

EasyExamNotes.com Omega notation

Table of Contents

What Is Omega Notation
Omega notation (Ω) is a mathematical notation used in computer science to describe the
lower bound or best-case behavior of an algorithm or function.

It represents the minimum growth rate of the algorithm’s time complexity or space
complexity as the input size approaches infinity.

In Omega notation, we use the symbol “Ω” followed by a function.

The function typically represents the number of operations performed by the algorithm or the
amount of space required.

Some Commonly Used Omega Notations (Ω):

What is Omega notation
Some commonly used Omega notations (Ω):

1. Ω(1):
2. Ω(log n):
3. Ω(n):
4. Ω(n log n):
5. Ω(n2):

Analyze the time complexity of the algorithm, using Omega notation.
Example 1:
Example 2:
Example 3:

Omega notation

EasyExamNotes.com Omega notation

1. Ω(1):

This notation represents a constant lower bound. It indicates that the algorithm takes at least
a constant amount of time, regardless of the input size.

2. Ω(log n):

This notation represents a logarithmic lower bound. It indicates that the algorithm takes at
least logarithmic time with respect to the input size. Algorithms with this lower bound often
divide the problem into smaller subproblems in each step.

3. Ω(n):

This notation represents a linear lower bound. It indicates that the algorithm takes at least
linear time with respect to the input size. Algorithms with this lower bound typically iterate
through the input elements once.

4. Ω(n log n):

This notation represents a lower bound that grows faster than linear but slower than
quadratic time. It indicates that the algorithm takes at least n log n time with respect to the
input size. Sorting algorithms like merge sort and heap sort have this lower bound.

5. Ω(n2):

This notation represents a quadratic lower bound. It indicates that the algorithm takes at
least quadratic time with respect to the input size. Algorithms with nested loops that iterate
over the input have this lower bound.

Omega notation

EasyExamNotes.com Omega notation

Analyze The Time Complexity Of The
Algorithm, Using Omega Notation.
Example 1:

C

#include <stdio.h>

int find_max(int arr[], int length) {
 int max_value = arr[0]; // Assume the first element is the
maximum

 for (int i = 1; i < length; i++) {
 if (arr[i] > max_value) {
 max_value = arr[i];
 }
 }

 return max_value;
}

int main() {
 int arr[] = {5, 8, 2, 10, 3};
 int length = sizeof(arr) / sizeof(arr[0]);

 int max = find_max(arr, length);
 printf("Maximum value: %d\n", max);

 return 0;
}

Omega notation

EasyExamNotes.com Omega notation

The initialization step int max_value = arr[0] takes constant time and can be1.
considered Ω(1).
The for loop iterates from index 1 to length – 1, where length is the length of the array.2.
The loop runs length – 1 times.
Inside the loop, the comparison if (arr[i] > max_value) and the subsequent assignment3.
max_value = arr[i] both take constant time and can be considered Ω(1).
The return statement also takes constant time and can be considered Ω(1).4.

As a result, the time complexity using the Omega notation (Ω) in the given code is Ω(1) in the
best-case scenario and Ω(length) in the worst-case scenario.

Example 2:

C

#include <stdio.h>

int main() {
 int i;
 for (i = 1; i <= 10; i++) {
 printf("%d\n", i);
 }
 return 0;
}

The loop runs for a fixed number of iterations, specifically from 1 to 10. Since the loop does

Omega notation

EasyExamNotes.com Omega notation

not depend on any variable or input size, the time complexity is constant.

In the best-case scenario, the loop executes only once, and the time complexity is Ω(1). This
represents the lower limit of the execution time when the loop runs only for the first iteration.

In the worst-case scenario, the loop will execute all 10 iterations, and the time complexity
remains constant. In this case, the lower limit of the execution time is still Ω(1).

Example 3:

C

#include <stdio.h>

int main() {
 int i,n;
 printf("Enter a number");
 scanf("%d",&n);
 for (i = 1; i <= n; i++) {
 printf("%d\n", i);
 }
 return 0;
}

The scanf function for getting user input takes constant time and can be considered1.
Ω(1).

Omega notation

EasyExamNotes.com Omega notation

The for loop iterates from 1 to n, where n represents the user input. The loop runs n2.
times.
Inside the loop, the printf function prints the value of i. The printf function takes3.
constant time as it performs a fixed number of operations. Thus, it can be considered
Ω(1).

Therefore, the time complexity of the for loop is Ω(n).

