Prim's algorithm is a greedy algorithm used to find the minimum spanning tree (MST) of a weighted undirected graph.

A minimum spanning tree is a tree that spans all the vertices of the graph with the minimum possible total edge weight.

Outline of Prim's algorithm:

- 1. Start with an arbitrary vertex as the starting point.
- 2. Initialize an empty set to store the MST.
- 3. Initialize a priority gueue (min-heap) to store the edges connected to the current MST.
- 4. Mark the starting vertex as visited.
- 5. Add all the edges connected to the starting vertex to the priority queue.
- 6. Repeat the following steps until all vertices are visited or the priority queue is empty:
 - a. Remove the minimum-weight edge (u, v) from the priority queue.
 - b. If the vertex v is not visited, add it to the MST and mark it as visited.
 - c. Add all the edges connected to v that lead to unvisited vertices to the priority queue.
- 7. Return the MST.

The pseudocode for Prim's algorithm:

Prim's Algorithm:

Input: Graph G with vertices V and edges E, weights assigned to each

```
edge
1. Initialize an empty set to store the MST: MST = {}
2. Initialize a priority queue (min-heap) to store the edges connected
to the current MST: PQ = {}
3. Select an arbitrary starting vertex s from V.
4. Mark s as visited.
5. Add all the edges connected to s to the priority queue PQ.
6. Repeat the following steps until all vertices are visited or PQ is
empty:
   a. Remove the minimum-weight edge (u, v) from PQ.
   b. If v is not visited:
     - Add (u, v) to MST.
      - Mark v as visited.
     - Add all the edges connected to v that lead to unvisited
vertices to PQ.
7. Return MST.
```

Example:

Undirected graph

Resulting minimum spanning tree

