Prove that $G=\{-1,1, i,-i\}$ is a group under multiplication.

First need to show that G is indeed closed under the operation * we have $1 * 1=1$ where $1 \in G$
we have $-1 *-1=1$ where $1 \in G$
we have $1 *-1=-1$ where $-1 \in \mathrm{G}$ and $-1 * 1=-1 \in \mathrm{G}$
we have $1 * i=i$ and $i * 1=i$ where $i \in G$
we have $-1 * i=-i$ and $i *-1=-i$ where $-i \in G$
let $k \in N$ then $i 2 k=-1$ where $-1 \in G$

Finally let $k \in N$ then we have $i 2 k+1=-i$ where $-i \in G$

So, all possible outcomes from every combination of multiplication between any elements yields an element in G.

Related posts:

1. Group
2. Undirected Graph and Incident Matrix
3. Prove the following by using the principle of mathematical induction for all $n \in N, 1^{3}+$ $2^{3}+3^{3}+\ldots+n^{3}=[n(n+1) / 2]^{2}$
4. Hasse diagram for the "less than or equal to" relation on the set $S=\{0,1,2,3,4,5\}$
5. SET
6. Mathematical induction

Prove that $\mathrm{G}=\{-1,1, \mathrm{i},-\mathrm{i}\}$ is a group under multiplication.
7. Relation
8. Net 34
9. prove that- $A X(B \cap C)=(A X B) \cap(A X C)$
10. Prove that- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
11. prove that $-(A \cap B) X(C \cap D)=(A X C) \cap(B X D)$
12. Show that- $(P \cap Q) X(R \cap S)=(P X R) \cap(Q X S)$
13. Binary operations
14. Algebraic structure
15. Show that (..., $-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ is group
16. Show that $\mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}$
17. if $a^{*} c=c^{*} a$ and $b^{*} c=c^{*} b$, then $\left(a^{*} b\right)^{*} c=c^{*}(a * b)$

