Prove the following by using the principle of mathematical induction for all $n \in N, 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=[n(n+1) / 2]^{2}$

Prove the following by using the principle of mathematical induction for all $n \in N$ $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=[n(n+1) / 2]^{2}$

Solution:

Let $P(n)$ be the given statement.
i.e., $P(n): 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=[n(n+1) / 2]^{2}$

For $\mathrm{n}=1$,
$P(1): 1^{3}=[1(1+1) / 2]^{2}$
$1=[(1 \times 2) / 2]^{2}$
$1=1$, which is true.

Assume that $P(k)$ is true for some positive integer k.
1.e., $P(k): 1^{3}+2^{3}+3^{3}+\ldots+k^{3}=[k(k+1) / 2]^{2}$

We will now prove that $P(k+1)$ is also true.

Now, we have
$1^{3}+2^{3}+3^{3}+\ldots+(k+1)^{3}$
$=\left(1^{3}+2^{3}+3^{3}+\ldots+k^{3}\right)+(k+1)^{3}$

EasyExamNotes.com Prove the following by using the principle of mathematical induction for all $n \in N, 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=[n(n+1) / 2]^{2}$

Prove the following by using the principle of mathematical induction for all $n \in N, 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=[n(n+1) / 2]^{2}$

$$
\begin{aligned}
& =[k(k+1) / 2]^{2}+(k+1)^{3} \ldots \text { From }(1) \\
& =\left[k^{2}(k+1)^{2} / 4\right]+(k+1)^{3} \\
& =\left[k^{2}(k+1)^{2}+4(k+1)^{3}\right] / 4 \\
& =(k+1)^{2}\left[k^{2}+4(k+1)\right] / 4 \\
& =(k+1)^{2}\left[k^{2}+4 k+4\right] / 4 \\
& =\left[(k+1)^{2}(k+2)^{2}\right] / 4 \\
& =[(k+1)(k+2) / 2]^{2} \\
& =[(k+1)(k+1+1) / 2]^{2}
\end{aligned}
$$

Thus, $P(k+1)$ is true, whenever $P(k)$ is true.

Hence, from the principle of mathematical induction, the statement $P(n)$ is true for all natural numbers i.e., $n \in N$.

Related posts:

1. Group
2. Undirected Graph and Incident Matrix
3. Prove that $G=\{-1,1, i,-i\}$ is a group under multiplication.
4. Hasse diagram for the "less than or equal to" relation on the set $S=\{0,1,2,3,4,5\}$
5. SET

Prove the following by using the principle of mathematical induction for all $n \in N, 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=[n(n+1) / 2]^{2}$
6. Mathematical induction
7. Relation
8. Net 34
9. prove that- $A X(B \cap C)=(A X B) \cap(A X C)$
10. Prove that- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
11. prove that $-(A \cap B) X(C \cap D)=(A X C) \cap(B X D)$
12. Show that- $(P \cap Q) X(R \cap S)=(P X R) \cap(Q X S)$
13. Binary operations
14. Algebraic structure
15. Show that (..., $-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ is group
16. Show that $a * b=b * a$
17. if $a^{*} c=c^{*} a$ and $b^{*} c=c^{*} b$, then $\left(a^{*} b\right)^{*} c=c^{*}(a * b)$

