A Pushdown automata (PDA) works similar as DFA.

A DFA can remember a finite amount of information, but a PDA can remember an infinite amount of information.

A PDA can be formally described as a 7-tuple (Q, $\Sigma, \mathrm{S}, \delta, \mathrm{q} 0, \mathrm{I}, \mathrm{F})$ -

1. Q: Finite number of states
2. \sum : Input alphabet
3. S: Stack
4. $\delta:$ Transition function: $Q \times(\Sigma \cup\{\varepsilon\}) \times S \times Q \times S^{*}$
5. q0: Initial state $(q 0 \in Q)$
6. I: Initial stack top symbol $(I \in S)$
7. F: Final state

PDA $=$ FSM + Stack

Where, FSM for finite state machine.

Components of PDA are,

1. Input tape
2. Control unit
3. Stack
Related Posts:
4. Definition of Deterministic Finite Automata
5. Notations for DFA
6. How do a DFA Process Strings?4. DFA solved examples5. Definition Non Deterministic Finite Automata
7. Moore machine
8. Mealy Machine
9. Regular Expression Examples
10. Regular expression
11. Arden's Law
12. NFA with \in-Moves
13. NFA with \in to DFA Indirect Method
14. Define Mealy and Moore Machine
15. What is Trap state ?
16. Equivalent of DFA and NFA
17. Properties of transition functions
18. Mealy to Moore Machine
19. Moore to Mealy machine
20. Diiference between Mealy and Moore machine
21. Remove \in transitions from NFA
22. TOC 1
23. Diiference between Mealy and Moore machine
24. RGPV TOC What do you understand by DFA how to represent it
25. What is Regular Expression
26. What is Regular Set in TOC
27. RGPV short note on automata
28. RGPV TOC properties of transition functions
29. RGPV TOC What is Trap state
30. DFA which accept 00 and 11 at the end of a string
31. CFL are not closed under intersection
32. NFA to DFA | RGPV TOC
33. Moore to Mealy | RGPV TOC PYQ
34. DFA accept even 0 and even 1 |RGPV TOC PYQ
35. Short note on automata \| RGPV TOC PYQ
36. DFA ending with 00 start with 0 no epsilon | RGPV TOC PYQ
37. DFA ending with 101 | RGPV TOC PYQ
38. Construct DFA for a power $n, n>=0| | ~ R G P V ~ T O C ~$
39. Construct FA divisible by $3 \mid$ RGPV TOC PYQ
40. Construct DFA equivalent to NFA \| RGPV TOC PYQ
41. RGPV Define Mealy and Moore Machine
42. RGPV TOC Short note on equivalent of DFA and NFA
43. RGPV notes Write short note on NDFA
44. Minimization of DFA
45. Construct NFA without \in
46. CNF from S->aAD;A->aB/bAB;B->b,D->d.
47. NDFA accepting two consecutive a's or two consecutive b's.
48. Regular expresion to CFG
49. Regular expression to Regular grammar
50. Grammar is ambiguous. $\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \in$
51. leftmost and rightmost derivations
52. Construct Moore machine for Mealy machine
53. RGPV TOC PYQs
54. Introduction to Automata Theory
55. Design a NFA that accepts the language over the alphabet, $\Sigma=\{0,1,2\}$ where the decimal equivalent of the language is divisible by 3.
