- 1. What does the M/M/1 notation represent in waiting line models?
- a) Multiple servers with exponential service times
- b) Single server with exponential service times
- c) Multiple servers with constant service times
- d) Single server with constant service times

Answer: b) Single server with exponential service times

Explanation: In waiting line models, M/M/1 signifies a single-server system where arrivals and service times follow exponential distributions.

- 2. Which factor is crucial for determining the average length of customers in an M/M/1 queue?
- a) Arrival rate
- b) Service rate
- c) Number of servers
- d) Queue discipline

Answer: a) Arrival rate

Explanation: The average length of customers in an M/M/1 queue heavily depends on the rate at which customers arrive.

- 3. What is the optimum service rate in an M/M/1 queue system?
- a) Equal to the arrival rate

- b) Equal to half of the arrival rate
- c) Greater than the arrival rate
- d) Independent of the arrival rate

Answer: c) Greater than the arrival rate

Explanation: The optimum service rate in an M/M/1 queue system is greater than the arrival rate to prevent infinite queue growth.

- 4. In a multiple-server model (M/M/s), what does 's' represent?
- a) Number of servers
- b) Arrival rate
- c) Service rate
- d) Queue size

Answer: a) Number of servers

Explanation: 's' in the M/M/s model denotes the number of servers available to serve customers concurrently.

- 5. What is a competitive strategy in game theory?
- a) A strategy aimed at cooperation
- b) A strategy to dominate opponents
- c) A strategy focused on minimizing losses
- d) A strategy aimed at outperforming others

Answer: d) A strategy aimed at outperforming others

Explanation: A competitive strategy in game theory involves making decisions to achieve an advantage over other participants.

- 6. Which method can be used to solve two-person zero-sum games graphically?
- a) Simplex method
- b) Linear programming
- c) Dominance
- d) Payoff matrix

Answer: d) Payoff matrix

Explanation: Two-person zero-sum games can be solved graphically using a payoff matrix, where each player's strategies and payoffs are outlined.

- 7. What is a pure strategy in game theory?
- a) A strategy involving random choices
- b) A strategy based on mixed actions
- c) A deterministic strategy
- d) A strategy aimed at cooperation

Answer: c) A deterministic strategy

Explanation: A pure strategy in game theory involves selecting a specific action with certainty, without incorporating random elements.

- 8. In game theory, what does dominance refer to?
- a) Strategy that always yields the highest payoff
- b) Strategy that eliminates all opponents
- c) Strategy that guarantees a win
- d) Strategy that is always better regardless of opponents' choices

Answer: d) Strategy that is always better regardless of opponents' choices

Explanation: Dominance in game theory refers to a strategy that is superior to others regardless of opponents' choices.

- 9. What does LP stand for in solving game theory problems?
- a) Linear Probability
- b) Linear Performance
- c) Linear Programming
- d) Limited Play

Answer: c) Linear Programming

Explanation: LP stands for Linear Programming, a method used to solve various optimization problems, including those in game theory.

- 10. In a two-person zero-sum game, what is a saddle point?
- a) A point of equilibrium
- b) A point of maximum payoff

- c) A point of minimum payoff
- d) A point of dominance

Answer: a) A point of equilibrium

Explanation: In a two-person zero-sum game, a saddle point is a point of equilibrium where neither player has an incentive to change their strategy.

- 11. What assumption is commonly made in waiting line models regarding service times?
- a) Exponential distribution
- b) Constant distribution
- c) Normal distribution
- d) Poisson distribution

Answer: a) Exponential distribution

Explanation: Waiting line models often assume that service times follow an exponential distribution, allowing for mathematical tractability.

- 12. In game theory, what does a mixed strategy involve?
- a) Using a combination of deterministic actions
- b) Randomly selecting strategies
- c) Collaborating with opponents
- d) Eliminating opponents

Answer: a) Using a combination of deterministic actions

Queueing Theory & Game Theory MCQs

Explanation: A mixed strategy in game theory involves using a combination of deterministic actions to create uncertainty for opponents.

13. What factor is crucial for determining the average time a customer spends in a waiting line?

- a) Service rate
- b) Arrival rate
- c) Queue discipline
- d) Number of servers

Answer: c) Queue discipline

Explanation: The average time a customer spends in a waiting line is influenced by the discipline followed in managing the queue, such as first-come-first-served or priority-based.

14. Which method is used to solve game theory problems algebraically?

- a) Dominance
- b) Payoff matrix
- c) Linear programming
- d) Graphical method

Answer: c) Linear programming

Explanation: Game theory problems can be solved algebraically using techniques like linear programming to optimize strategies and outcomes.

- 15. What does the 'M' represent in M/M/s waiting line models?
- a) Maximum queue size
- b) Minimum service time
- c) Markovian property
- d) Maximum arrival rate

Answer: c) Markovian property

Explanation: In M/M/s waiting line models, the 'M' signifies the Markovian property, where the next state of the system depends only on its current state, not its history.

## Related posts:

- 1. Steam generators and boilers MCQs
- 2. Vapour Cycles MCQs
- 3. Gas Dynamics MCQs
- 4. Air Compressors MCQs
- 5. Nozzles and Condensers MCQs
- 6. Introduction to stress in machine component MCQs
- 7. Shafts MCQS
- 8. Springs MCQs
- 9. Brakes & Clutches MCQs
- 10. Journal Bearing MCQs
- 11. Energy transfer in turbo machines MCQs
- 12. Steam turbines MCQs
- 13. Water turbines MCQs
- 14. Rotary Fans, Blowers and Compressors MCQs

- 15. Power transmitting turbo machines MCQs
- 16. Energy transfer in turbo machines MCQs
- 17. Steam turbines MCQs
- 18. Water turbines MCQS
- 19. Rotary Fans, Blowers and Compressors MCQs
- 20. Power transmitting turbo machines MCQs
- 21. Introduction to Computer Engineering MCQs
- 22. Types of Analysis MCQS
- 23. Heat Transfer and Conduction MCQs
- 24. Extended Surfaces (fins) MCQs
- 25. Convection MCQs
- 26. Thermal and Mass Transfer MCQs
- 27. Thermal Radiation & Boiling/Condensation MCQs
- 28. Mechanical processes MCQs
- 29. Electrochemical and chemical metal removal processes MCQs
- 30. Thermal metal removal processes MCQs
- 31. Rapid prototyping fabrication methods MCQs
- 32. Technologies of micro fabrication MCQs
- 33. Power Plant Engineering MCQs
- 34. Fossil fuel steam stations MCQs
- 35. Nuclear Power Station MCQs
- 36. Hydro-Power Station MCQs
- 37. Power Station Economics MCQs
- 38. Design of Belt, Rope and Chain Drives MCQS
- 39. Spur and Helical Gears MCQs
- 40. Bevel Gears MCQs
- 41. Design of I.C. Engine Components MCQs

- 42. Linear system and distribution models MCQs
- 43. Supply chain (SCM) MCQs
- 44. Inventory models MCQs
- 45. Project Management & Meta-heuristics MCQs
- 46. Overview of Systems Engineering MCQS
- 47. Structure of Complex Systems MCQs
- 48. Concept Development and Exploration MCQs
- 49. Engineering Development MCQs
- 50. Basic Concepts & Laws of Thermodynamics MCQs
- 51. Properties of Steam MCQs
- 52. Air standard cycles MCQS
- 53. Fuels & combustion MCQs
- 54. Materials Science MCQs
- 55. Alloys and Materials MCQs
- 56. Metal Heat Treatment MCQs
- 57. Material Testing and Properties MCQs
- 58. Chemical Analysis of Metal Alloys MCQs
- 59. Stress and strain MCQs
- 60. Bending MCQs
- 61. Torsion in shafts MCQs
- 62. Theories of failures MCQs
- 63. Columns & struts MCQs
- 64. Manufacturing Process MCQs