
Regular expresion to CFG

EasyExamNotes.com Regular expresion to CFG

To convert a regular expression to a context-free grammar (CFG), you can follow a set of
standard conversion rules.

Here are the rules for converting a regular expression to a CFG:

1. Terminal Symbols:

Each character or symbol in the regular expression becomes a terminal symbol in the CFG.

2. Start Symbol:

Create a new start symbol for the CFG.

3. Concatenation:

For every concatenation (ab) in the regular expression, add a new production rule in the CFG.
The left-hand side of the rule should be a non-terminal symbol representing the
concatenation, and the right-hand side should be the concatenation of the non-terminal
symbols representing the individual characters/symbols.

4. Union:

For every union (a + b) in the regular expression, add a new production rule in the CFG. The
left-hand side of the rule should be a non-terminal symbol representing the union, and the
right-hand side should have two alternatives, one for each character/symbol in the union.

5. Kleene Star:

For every Kleene star (a*) in the regular expression, add a new production rule in the CFG.

https://easyexamnotes.com/what-is-regular-expression/


Regular expresion to CFG

EasyExamNotes.com Regular expresion to CFG

The left-hand side of the rule should be a non-terminal symbol representing the Kleene star,
and the right-hand side should have two alternatives. One alternative should be the non-
terminal symbol representing the character/symbol, followed by the non-terminal symbol
representing the Kleene star itself. The other alternative should be ε (epsilon), indicating an
empty string.

6. Parentheses:

If the regular expression contains parentheses, treat the contents within the parentheses as a
separate expression and apply the conversion rules recursively.

By following these rules, you can convert a regular expression into an equivalent context-free
grammar (CFG). Note that the resulting CFG may contain additional non-terminal symbols
and production rules compared to the original regular expression.

Practice problem on Regular expresion to CFG

Q1. Write given CFG for R.E (011 + 1)*(01)* (RGPV 2020). 

Here’s the context-free grammar (CFG) for the given regular expression (011 + 1)(01):

Non-terminal symbols:
S: Start symbol
A: Represents the regular expression (011 + 1)*
B: Represents the regular expression (01)*

Terminal symbols:
0, 1: Binary digits



Regular expresion to CFG

EasyExamNotes.com Regular expresion to CFG

Production rules:

S -> AB1.
A -> 011A2.
A -> 1A3.
A -> ε (epsilon)4.
B -> 01B5.
B -> ε (epsilon)6.

Explanation of the CFG:

The CFG consists of two non-terminal symbols, A and B, which represent the two parts of the
regular expression. Non-terminal symbol S is the start symbol, which represents the entire
regular expression (011 + 1)(01).

The production rules define the valid derivations for each non-terminal symbol. Rule 1 states
that the start symbol S can be derived as AB, meaning it can be split into parts A and B. Rule
2 defines that A can be derived as 011A, indicating that the regular expression (011 + 1) can
repeat zero or more times. Rule 3 states that A can be derived as 1A, allowing the regular
expression 1 to repeat zero or more times. Rule 4 allows A to be derived as ε (epsilon),
indicating that it can be empty.

Similarly, Rule 5 defines that B can be derived as 01B, indicating that the regular expression
01 can repeat zero or more times. Rule 6 allows B to be derived as ε (epsilon), indicating that
it can be empty.

By applying these production rules, you can generate strings that match the given regular
expression.



Regular expresion to CFG

EasyExamNotes.com Regular expresion to CFG

Q2. Regular Expression: (a + b)*

A. CFG:

Start Symbol: S
Terminal Symbols: a, b
Production Rules:
S -> Sa
S -> Sb
S -> ε (epsilon)

Q3. Regular Expression: ab

A. CFG:

Start Symbol: S
Terminal Symbols: a, b
Production Rules:
S -> aS
S -> bS
S -> ε (epsilon)

Q4. Regular Expression: (aa + b)*c

A. CFG:

Start Symbol: S
Terminal Symbols: a, b, c



Regular expresion to CFG

EasyExamNotes.com Regular expresion to CFG

Production Rules:
S -> SS
S -> a
S -> b
S -> c

Q5. Regular Expression: (a + b)c*

A. CFG:

Start Symbol: S
Terminal Symbols: a, b, c
Production Rules:
S -> aS
S -> bS
S -> cS
S -> ε (epsilon)

Q6. Regular Expression: (abc*)+

A. CFG:

Start Symbol: S
Terminal Symbols: a, b, c
Production Rules:
S -> T+
T -> aT
T -> bT



Regular expresion to CFG

EasyExamNotes.com Regular expresion to CFG

T -> cT
T -> ε (epsilon)

Related posts:

Regular expression to Regular grammar1.
RGPV TOC What do you understand by DFA how to represent it2.
What is Regular Expression3.
RGPV short note on automata4.
RGPV TOC properties of transition functions5.
RGPV TOC What is Trap state6.
CFL are not closed under intersection7.
NFA to DFA | RGPV TOC8.
Moore to Mealy | RGPV TOC PYQ9.
DFA accept even 0 and even 1 |RGPV TOC PYQ10.
Short note on automata | RGPV TOC PYQ11.
DFA ending with 00 start with 0 no epsilon | RGPV TOC PYQ12.
DFA ending with 101 | RGPV TOC PYQ13.
Construct DFA for a power n, n>=0 || RGPV TOC14.
Construct FA divisible by 3 | RGPV TOC PYQ15.
Construct DFA equivalent to NFA | RGPV TOC PYQ16.
RGPV Define Mealy and Moore Machine17.
RGPV TOC Short note on equivalent of DFA and NFA18.
RGPV notes Write short note on NDFA19.
CNF from S–>aAD;A->aB/bAB;B->b,D->d.20.
NDFA accepting two consecutive a’s or two consecutive b’s.21.
Grammar is ambiguous. S → aSbS|bSaS|∈22.

https://easyexamnotes.com/regular-expression-to-regular-grammar/
https://easyexamnotes.com/rgpv-toc-what-do-you-understand-by-dfa-how-to-represent-it/
https://easyexamnotes.com/what-is-regular-expression/
https://easyexamnotes.com/rgpv-short-note-on-automata/
https://easyexamnotes.com/rgpv-toc-properties-of-transition-functions/
https://easyexamnotes.com/rgpv-toc-what-is-trap-state/
https://easyexamnotes.com/cfl-are-not-closed-under-intersection/
https://easyexamnotes.com/nfa-to-dfa-rgpv-toc/
https://easyexamnotes.com/moore-to-mealy-rgpv-toc-pyq/
https://easyexamnotes.com/dfa-accept-even-0-and-even-1-rgpv-toc-pyq/
https://easyexamnotes.com/short-note-on-automata-rgpv-toc-pyq/
https://easyexamnotes.com/dfa-ending-with-00-start-with-0-no-epsilon-rgpv-toc-pyq/
https://easyexamnotes.com/dfa-ending-with-101-rgpv-toc-pyq/
https://easyexamnotes.com/construct-dfa-for-a-power-n-n0-rgpv-toc/
https://easyexamnotes.com/construct-fa-divisible-by-3-rgpv-toc-pyq/
https://easyexamnotes.com/construct-dfa-equivalent-to-nfa-rgpv-toc-pyq/
https://easyexamnotes.com/rgpv-define-mealy-and-moore-machine/
https://easyexamnotes.com/rgpv-toc-short-note-on-equivalent-of-dfa-and-nfa/
https://easyexamnotes.com/rgpv-notes-write-short-note-on-ndfa/
https://easyexamnotes.com/cnf-from-s-aada-ab-babb-bd-d/
https://easyexamnotes.com/ndfa-accepting-two-consecutive-as-or-two-consecutive-bs/
https://easyexamnotes.com/grammar-is-ambiguous-s-%e2%86%92-asbsbsas%e2%88%88/


Regular expresion to CFG

EasyExamNotes.com Regular expresion to CFG

leftmost and rightmost derivations23.
Construct Moore machine for Mealy machine24.
Definition of Deterministic Finite Automata25.
Notations for DFA26.
How do a DFA Process Strings?27.
DFA solved examples28.
Definition Non Deterministic Finite Automata29.
Moore machine30.
Mealy Machine31.
Regular Expression Examples32.
Regular expression33.
Arden’s Law34.
NFA with ∈-Moves35.
NFA with ∈ to DFA Indirect Method36.
Define Mealy and Moore Machine37.
What is Trap state ?38.
Equivalent of DFA and NFA39.
Properties of transition functions40.
Mealy to Moore Machine41.
Moore to Mealy machine42.
Diiference between Mealy and Moore machine43.
Pushdown Automata44.
Remove ∈ transitions from NFA45.
TOC 146.
Diiference between Mealy and Moore machine47.
What is Regular Set in TOC48.
DFA which accept 00 and 11 at the end of a string49.

https://easyexamnotes.com/leftmost-and-rightmost-derivations/
https://easyexamnotes.com/construct-moore-machine-for-mealy-machine/
https://easyexamnotes.com/definition-of-dfa/
https://easyexamnotes.com/notations-for-dfa/
https://easyexamnotes.com/hoe-do-dfa-process-strings/
https://easyexamnotes.com/dfa-solved-examples/
https://easyexamnotes.com/nfa-non-deterministic-finite-automata/
https://easyexamnotes.com/moore-machine/
https://easyexamnotes.com/mealy-machine/
https://easyexamnotes.com/regular-expressions-examples/
https://easyexamnotes.com/regular-expression/
https://easyexamnotes.com/ardens-law/
https://easyexamnotes.com/nfa-with-%e2%88%88-moves/
https://easyexamnotes.com/nfa-with-%e2%88%88-to-dfa-indirect-method/
https://easyexamnotes.com/define-mealy-and-moore-machine/
https://easyexamnotes.com/what-is-trap-state/
https://easyexamnotes.com/equivalent-of-dfa-and-nfa/
https://easyexamnotes.com/properties-of-transition-functions/
https://easyexamnotes.com/mealy-to-moore-machine/
https://easyexamnotes.com/moore-to-mealy-machine/
https://easyexamnotes.com/diiference-between-mealy-and-moore-machine-2/
https://easyexamnotes.com/pushdown-automata/
https://easyexamnotes.com/construct-nfa-without/
https://easyexamnotes.com/toc-1/
https://easyexamnotes.com/diiference-between-mealy-and-moore-machine/
https://easyexamnotes.com/what-is-regular-set-in-toc/
https://easyexamnotes.com/dfa-which-accept-00-and-11-at-end-of/


Regular expresion to CFG

EasyExamNotes.com Regular expresion to CFG

DFA end with 1 contain 00 | RGPV TOC draw50.
RGPV TOC design finite automata problems51.
Minimization of DFA52.
Construct NFA without ∈53.
RGPV TOC PYQs54.
Introduction to Automata Theory55.

https://easyexamnotes.com/dfa-end-with-1-contain-00-rgpv-toc-draw/
https://easyexamnotes.com/rgpv-toc-design-finite-automata-problems/
https://easyexamnotes.com/minimization-of-dfa/
https://easyexamnotes.com/construct-nfa-without-epsilon/
https://easyexamnotes.com/rgpv-toc-pyqs/
https://easyexamnotes.com/introduction-to-automata-theory/

