RGPV 2002

Q. Write a short note on non-deterministic finite automta?

Ans. Non deterministic finite automata refere as NDFA or NFA allows a set of possible moves. For example from a state an input '1' can transit 0 times, 1 times or more than 1 times.

Its not determined in NFA like in DFA.

NDFA is defined as 5 tuple machine:

 $M = (Q, \Sigma, \delta, q0, F)$

- 1. Q is a finite non empty set of states.
- 2. Σ is a finite non empty set of input symbols.
- 3. δ is a transition function, QX Σ int to 2°
- 4. q0 is an initial state belong to Q.
- 5. F is the set of final states belong to Q.

To understood NDFA, lets compare it with DFA.

NDFA	DFA
Non Deterministic Finite Automata	Deterministic Finite Automata
Empty String transition allowed in DDFA.	Empty String transition not allowed in DFA.
In NDDFA, the next possible state is not	In DFA, the next possible state is
determined.	determined.
For NDFA, DFA may or may not exist.	For all DFA there exist NDFA
NDFA is like combination of many machines.	DFA is like a single machine.
NDFA is easy to construct.	DFA is touch to construct compare to NDFA.

Some examples of NDFA:

Problem 01: Construct a NDFA for the language accepting strings having even number of 1's over input alphabets $\Sigma = \{0, 1\}$.

Problem 02: Construct a NDFA for the language accepting strings containg '01' as substring over input alphabets $\Sigma = \{0, 1\}$.

Problem 03: Construct a NDFA for the language accepting strings containg '0' as divisible by 3 over input alphabets $\Sigma = \{0, 1\}$.

Related Posts:

- 1. RGPV Define Mealy and Moore Machine
- 2. RGPV TOC Short note on equivalent of DFA and NFA
- 3. RGPV TOC What do you understand by DFA how to represent it

- 4. RGPV short note on automata
- 5. RGPV TOC properties of transition functions
- 6. RGPV TOC What is Trap state
- 7. CFL are not closed under intersection
- 8. NFA to DFA | RGPV TOC
- 9. Moore to Mealy | RGPV TOC PYQ
- 10. DFA accept even 0 and even 1 |RGPV TOC PYQ
- 11. Short note on automata | RGPV TOC PYQ
- 12. DFA ending with 00 start with 0 no epsilon | RGPV TOC PYQ
- 13. DFA ending with 101 | RGPV TOC PYQ
- 14. Construct DFA for a power n, $n \ge 0$ || RGPV TOC
- 15. Construct FA divisible by 3 | RGPV TOC PYQ
- 16. Construct DFA equivalent to NFA | RGPV TOC PYQ
- 17. CNF from S->aAD;A->aB/bAB;B->b,D->d.
- 18. NDFA accepting two consecutive a's or two consecutive b's.
- 19. Regular expresion to CFG
- 20. Regular expression to Regular grammar
- 21. Grammar is ambiguous. $S \rightarrow aSbS|bSaS| \in$
- 22. leftmost and rightmost derivations
- 23. Construct Moore machine for Mealy machine
- 24. Definition of Deterministic Finite Automata
- 25. Notations for DFA
- 26. How do a DFA Process Strings?
- 27. DFA solved examples
- 28. Definition Non Deterministic Finite Automata
- 29. Moore machine
- 30. Mealy Machine

- 31. Regular Expression Examples
- 32. Regular expression
- 33. Arden's Law
- 34. NFA with ∈-Moves
- 35. NFA with ∈ to DFA Indirect Method
- 36. Define Mealy and Moore Machine
- 37. What is Trap state?
- 38. Equivalent of DFA and NFA
- 39. Properties of transition functions
- 40. Mealy to Moore Machine
- 41. Moore to Mealy machine
- 42. Diiference between Mealy and Moore machine
- 43. Pushdown Automata
- 44. Remove ∈ transitions from NFA
- 45. TOC 1
- 46. Diiference between Mealy and Moore machine
- 47. What is Regular Expression
- 48. What is Regular Set in TOC
- 49. DFA which accept 00 and 11 at the end of a string
- 50. DFA end with 1 contain 00 | RGPV TOC draw
- 51. RGPV TOC design finite automata problems
- 52. Minimization of DFA
- 53. Construct NFA without ∈
- 54. RGPV TOC PYQs
- 55. Introduction to Automata Theory