
RPC Implementation

EasyExamNotes.com RPC Implementation

Remote Procedure Call (RPC) Implementation

An RPC is analogous to a function call. Like a function call, when an RPC is made, the
calling arguments are passed to the remote procedure and the caller waits for a
response to be returned from the remote procedure.
Figure 1 shows the flow of activity that takes place during an RPC call between two
networked systems.
The client makes a procedure call that sends a request to the server and waits. The
thread is blocked from processing until either a reply is received, or it times out.
When the request arrives, the server calls a dispatch routine that performs the
requested service, and sends the reply to the client.
After the RPC call is completed, the client program continues. RPC specifically supports
network applications.
The client calls a local procedure, called the client stub. To the client process, this
appears to be the actual procedure, because it is a regular local procedure.
It just does something different since the real procedure is on the server. The client
stub packages the parameters to the remote procedure (this may involve converting
them to a standard format) and builds one or more network messages.
The packaging of arguments into a network message is called marshaling and requires
serializing all the data elements into a flat array-of-bytes format.
Network messages are sent by the client stub to the remote system (via a system call
to the local kernel using sockets interfaces).
Network messages are transferred by the kernel to the remote system via some
protocol (either connectionless or connection-oriented).
A server stub, sometimes called the skeleton, receives the messages on the server.
The server stub calls the server function (which, to the client, is the remote
procedure), passing it the arguments that it received from the client.

RPC Implementation

EasyExamNotes.com RPC Implementation

When the server function is finished, it returns to the server stub with its return values.
The server stub converts the return values, if necessary, and marshals them into one
or more network messages to send to the client stub.
Messages get sent back across the network to the client stub.
The client stub reads the messages from the local kernel.
The client stub then returns the results to the client function, converting them from the
network representation to a local one if necessary.

Remote Procedure Calling Mechanism Implemetation

RPC Implementation

EasyExamNotes.com RPC Implementation

RPC Procedure

Related posts:

RPC messages1.
RPC mechanism2.
Advantages Disadvantages of DS3.
Distributed computing models4.
Goals of DS5.
Hardware software concepts6.
Issues in designing ds7.
Design and Implementation Issues DS8.
Structure of share memory space9.
DSM Architecture & its Types10.
File Application & Fault tolerance11.
File service architecture12.
Desirable features of good distributed file system13.
Distributed shared memory14.
Election algorithm15.

https://easyexamnotes.com/rpc-messages/
https://easyexamnotes.com/rpc-mechanism/
https://easyexamnotes.com/advantages-disadvantages-of-ds/
https://easyexamnotes.com/distributed-computing-models/
https://easyexamnotes.com/goals-of-ds/
https://easyexamnotes.com/hardware-software-concepts-distributed/
https://easyexamnotes.com/issues-in-designing-ds/
https://easyexamnotes.com/design-n-implementation-issues-ds/
https://easyexamnotes.com/structure-of-shared-memory-space/
https://easyexamnotes.com/dsm-architecture-its-types/
https://easyexamnotes.com/file-application-fault-tolerance/
https://easyexamnotes.com/file-service-architecture/
https://easyexamnotes.com/desirable-features-of-good-distributed-file-system/
https://easyexamnotes.com/distributed-shared-memory/
https://easyexamnotes.com/election-algorithm/

RPC Implementation

EasyExamNotes.com RPC Implementation

Client server communication16.
Datarepresentation and Marshalling17.
Communication between distributed objects18.
Load distributing algorithm19.
Task migration and its issues20.
Deadlock issues in deadlock detection & resolution21.
Distributed Scheduling-Issues in Load Distributing22.
Characterstics of Multimedia Data23.
Case Study of Distributed System24.
Distributed multimedia system25.
Distributed DBMS26.
Advantages of DDBMS over centralised DBMS27.

https://easyexamnotes.com/client-server-communication/
https://easyexamnotes.com/data-representation-and-marshalling/
https://easyexamnotes.com/communication-between-distributed-objects/
https://easyexamnotes.com/load-distributing-algorithm/
https://easyexamnotes.com/task-migration-and-its-issues/
https://easyexamnotes.com/deadlock-issues-in-deadlock-detection-resolution/
https://easyexamnotes.com/distributed-scheduling-issues-in-load-distributing/
https://easyexamnotes.com/characterstics-of-multimedia-data/
https://easyexamnotes.com/case-study-of-distributed-system/
https://easyexamnotes.com/distributed-multimedia-system/
https://easyexamnotes.com/distributed-dbms/
https://easyexamnotes.com/advantages-of-ddbms-over-centralised-dbms/

